The systems approach, disasters, errors and patient safety: some comments on Travalgia et al., 2010

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: WATERSON, P.E., 2011. The systems approach, disasters, errors and patient safety: comments on Travalgia et al., 2010. [Published Letter]. BMJ Quality and Safety in Health Care.

Metadata Record: https://dspace.lboro.ac.uk/2134/8419

Version: Accepted for publication

Publisher: BMJ Publishing Group (© The author)

Please cite the published version.
This item is held in Loughborough University's Institutional Repository (https://dspace.lboro.ac.uk/) and was harvested from the British Library's EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions.

![Creative Commons License](https://i.imgur.com/3GJ3G.jpg)

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the [Legal Code (the full licence)](http://creativecommons.org/licenses/by-nc-nd/2.5/)

Disclaimer

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
A STEP-NC Compliant CAx System
For Wire-Cutting EDM Component Manufacturing

By
Ho, Keng Huat

A Doctoral Thesis
Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of the Loughborough University

November 2005
Wolfson School of Mechanical & Manufacturing Engineering

© Ho, K.H. 2005
ACKNOWLEDGEMENTS

I would like to acknowledge the support of Loughborough University, in particularly Wolfson School of Mechanical & Manufacturing Engineering, for funding the research studentship.

I would like to express my most sincere thanks to my supervisors, Dr. ST Newman and Dr. RD Allen, for their supervision, encouragement and interest in this research. Their professional guidance and patience have led to the development and completion of my research study.

In addition, I am also grateful to my colleagues, especially Dr. R Rosso Jr. and Mr. L Ali, who have been involved with the Advanced Manufacturing Systems and Technology Centre, for their contribution to the study of the STEP-NC compliant CAx system. I would also like to acknowledge the support of Mr. I Fenton and Mr. A Spence from 600 Centre, and Mr. M Pickering from Camtek, for the use of their CAD/CAM systems.

On a more personal note, I would like to thank all my former and present colleagues and students working/living in the Falkner Eggington Court for enriching my working experience as a Subwarden in the university hall of residence during my research study.

More importantly, I wish to express my deepest gratitude to my parents Mr. Ho Teow Kok and Mrs. Ho Lau Hong Eng, my sisters Mrs. Laura Yap Ho and Mrs. Sonia Sim Ho, my brother-in-laws Mr. Richard Yap and Mr. Eric Sim, and friends, in particularly Dr. BS Lee and Mr. MC Law, for their unwavering support and encouragement throughout the period of my research study. Last but not least, to my little niece Gwynne Yap and little nephews Gerald Yap and Gavin Sim, your baby-talk over the phone has never failed to brighten up my research study days.
ABSTRACT

For the past 20 years, CNC manufacturing has been relying on the proprietary format of G & M codes to control the machining process despite the remarkable advances made in machining and control technologies. This low-level format is based on the vendor-specific ISO 6983 standard, which provides limited information to the CNC producing a primitive machining process language concentrating mainly on the cutting toolpath. Moreover, the ISO 6983 data interface offers little or no interoperability between the different CAD/CAM systems and CNC’s, which is recognised as the key shortcoming of the current NC part programming process.

In recent years, a great deal of research effort has concentrated on the development of a new data model for the next generation of CNC’s entitled ISO 14649 (STEP-NC). It has been strongly argued that STEP-NC has huge implications on the integration of CAD/CAPP/CAM (CAx) systems, giving the opportunity to realise interoperable CAD to CNC manufacturing. This is largely due to the STEP-NC data model offering a bi-directional data interface with a high-level description of both geometrical and manufacturing information, thus providing a revolution over the current state-of-the-art in CNC manufacturing.

This research provides an investigation into the programming of wire-cutting electrical discharge machining (WEDM) machines using a high level process planning description based on the evolving STEP-NC standard. At present, part 13 of the standard has been dedicated to the non-conventional material removal process employing the use of a specialised thermal machining technique to machine parts with intricate shapes and of varying hardness. The major contribution of this research is the design of a STEP-NC compliant CAx system framework with product and manufacturing information models supporting the WEDM process chain from product design through to machining process planning and CNC manufacturing.

The research shows that conventional NC part programming is CAD-centric and can only offer an interim solution of satisfying the need for the WEDM CNC machining applications. STEP-NC strives for total integration of CAx systems with CNC by focusing on the standardisation of the product and manufacturing information for WEDM CNC manufacturing through the application of ISO 10303 standard (STEP). The research builds on such benefits and potentials of exploring STEP-NC to provide the basis for making a major step forward in facilitating interoperable CNC manufacturing for the WEDM process.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial intelligence</td>
</tr>
<tr>
<td>AIM</td>
<td>Application interpreted model</td>
</tr>
<tr>
<td>AP</td>
<td>Application protocols</td>
</tr>
<tr>
<td>API</td>
<td>Application programming interface</td>
</tr>
<tr>
<td>APT</td>
<td>Automatically programmed tool</td>
</tr>
<tr>
<td>ARM</td>
<td>Application reference model</td>
</tr>
<tr>
<td>ASCII</td>
<td>American standard code for information interchange</td>
</tr>
<tr>
<td>B-Rep</td>
<td>Boundary representation</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer aided design</td>
</tr>
<tr>
<td>CAD*I</td>
<td>CAD Interfaces</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer aided manufacturing</td>
</tr>
<tr>
<td>CAPP</td>
<td>Computer aided process planning</td>
</tr>
<tr>
<td>CAx</td>
<td>CAD/CAPP/CAM</td>
</tr>
<tr>
<td>CD</td>
<td>Committee draft</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer numerical control</td>
</tr>
<tr>
<td>CR</td>
<td>Cutting rate</td>
</tr>
<tr>
<td>CSG</td>
<td>constructive solid geometry</td>
</tr>
<tr>
<td>DBMS</td>
<td>Database management systems</td>
</tr>
<tr>
<td>DIS</td>
<td>Draft international standard</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of experiments</td>
</tr>
<tr>
<td>EDM</td>
<td>Electrical discharge machining</td>
</tr>
<tr>
<td>EIG</td>
<td>School of engineers de Genève at University of Geneva</td>
</tr>
<tr>
<td>EPFL</td>
<td>Federal Institute of Technology in Lausanne</td>
</tr>
<tr>
<td>ESPRIT</td>
<td>European strategies programme for research into information technology</td>
</tr>
<tr>
<td>FAPT</td>
<td>Fanuc Automatically Programmed Tools</td>
</tr>
<tr>
<td>FDIS</td>
<td>Final draft international standard</td>
</tr>
<tr>
<td>G, D & T</td>
<td>Geometries, dimensions and tolerances</td>
</tr>
<tr>
<td>GDLS</td>
<td>General Dynamics Land Systems</td>
</tr>
<tr>
<td>HMP</td>
<td>Hybrid machining process</td>
</tr>
<tr>
<td>HSTR</td>
<td>High strength and temperature resistive</td>
</tr>
<tr>
<td>IGES</td>
<td>Initial graphics exchange specification</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICAM</td>
<td>Integrated CAM</td>
</tr>
<tr>
<td>IMS</td>
<td>Intelligent Manufacturing System</td>
</tr>
<tr>
<td>IR</td>
<td>Integrated resource</td>
</tr>
<tr>
<td>IS</td>
<td>International standard</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardisation</td>
</tr>
<tr>
<td>JVM</td>
<td>Java virtual machine</td>
</tr>
<tr>
<td>MDM</td>
<td>Manufacturing data model</td>
</tr>
<tr>
<td>MDSI</td>
<td>Manufacturing Data System, Inc.</td>
</tr>
<tr>
<td>MModel</td>
<td>Manufacturing model</td>
</tr>
<tr>
<td>MMC</td>
<td>Metal matrix composites</td>
</tr>
<tr>
<td>MMR</td>
<td>Material removal rate</td>
</tr>
<tr>
<td>NC</td>
<td>Numerical control</td>
</tr>
<tr>
<td>NRL-SNT</td>
<td>National Research Laboratory for STEP-NC Technology</td>
</tr>
<tr>
<td>OLE</td>
<td>Object linking and embedding</td>
</tr>
<tr>
<td>OMAC</td>
<td>Open modular architecture controller</td>
</tr>
<tr>
<td>OODBMS</td>
<td>Object-oriented DBMS</td>
</tr>
<tr>
<td>OSI</td>
<td>Open systems interconnection</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PDDI</td>
<td>Product definition data interface</td>
</tr>
<tr>
<td>PDES</td>
<td>Product data exchange specification</td>
</tr>
<tr>
<td>PDM</td>
<td>Product data model</td>
</tr>
<tr>
<td>PEPS</td>
<td>Production Engineering Productivity System</td>
</tr>
<tr>
<td>PModel</td>
<td>Product model</td>
</tr>
<tr>
<td>PRF</td>
<td>Proof of a new international standard</td>
</tr>
<tr>
<td>SDAI</td>
<td>Standard data access interface</td>
</tr>
<tr>
<td>SDK</td>
<td>Software development kit</td>
</tr>
<tr>
<td>SET</td>
<td>Standard d'Echange et de Transfert</td>
</tr>
<tr>
<td>SF</td>
<td>Surface finish</td>
</tr>
<tr>
<td>SFP</td>
<td>Shopfloor-oriented NC programming</td>
</tr>
<tr>
<td>STEP</td>
<td>Standard for the transfer and exchange of product model data</td>
</tr>
<tr>
<td>N/S</td>
<td>Noise-to-signal</td>
</tr>
<tr>
<td>TC184/SC1</td>
<td>Technical committee 184/Subcommittee 1</td>
</tr>
<tr>
<td>TC184/SC4</td>
<td>Technical committee 184/Subcommittee 4</td>
</tr>
<tr>
<td>TS</td>
<td>Technical specification</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>UML</td>
<td>Unified modelling language</td>
</tr>
<tr>
<td>VAD-FS</td>
<td>Verband Der Automobilindustrie Flachen Schnittstelle</td>
</tr>
<tr>
<td>WECG</td>
<td>Wire electrochemical grinding</td>
</tr>
<tr>
<td>WEDG</td>
<td>Wire electrical discharge grinding</td>
</tr>
<tr>
<td>WEDM</td>
<td>Wire-cutting electrical discharge machining</td>
</tr>
<tr>
<td>Wire SNIPs</td>
<td>STEP-NC interoperable process planning prototype system for WEDM</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible markup language</td>
</tr>
</tbody>
</table>
Section 1 BACKGROUN/DLITERATURE REVIEW

Chapter 2
SCOPE OF RESEARCH

2.1 Introduction

2.2 Research aims and objectives

2.3 Scope of research

2.3.1 State-of-the-art in WEDM

2.3.2 Evolution of STEP-NC

2.3.3 Design of an interoperable STEP-NC compliant
 WEDM CAx system framework

2.3.4 STEP-NC compliant information modelling
 for WEDM component manufacturing

2.3.5 Computational environment for STEP-NC compliant
 WEDM CAx prototype system

2.3.6 Case study, testing and results

Chapter 3
STATE-OF-THE-ART IN
WIRE ELECTRICAL DISCHARGE MACHINING

3.1 Introduction

3.2 WEDM

3.2.1 History of WEDM

3.2.2 WEDM process

3.2.3 Hybrid machining processes

3.3 WEDM applications

3.3.1 Modern tooling applications

3.3.2 Advanced ceramic materials

3.3.3 Modern composite materials

3.4 Major areas of WEDM research

3.4.1 WEDM process optimisation

3.4.1.1 Process parameters design

3.4.1.2 Effects of the process parameters on the cutting rate

3.4.1.3 Effects of the machining parameters
 on the material removal rate

3.4.1.4 Effects of the process parameters on the surface finish

3.4.2 WEDM process monitoring and control

3.4.2.1 Fuzzy control system
3.4.2.2 Wire inaccuracy adaptive control systems ... 19
3.4.2.2.1 Wire breakage ... 19
3.4.2.2.2 Wire lag and wire vibration ... 20
3.4.2.3 Self-tuning adaptive control systems ... 21

3.5 Critique
3.5.1 Optimising the process variables ... 22
3.5.2 Monitoring and control the process .. 23
3.5.3 WEDM developments .. 24

Chapter 4
EVOLUTION STEP-NC ... 28

4.1 Introduction ... 28
4.2 Conventional NC part programming methods .. 28
4.2.1 Manual part programming .. 28
4.2.2 Computer-assisted part programming .. 29
4.2.3 CAD/CAM part programming .. 30
4.3 Data transfer standards ... 31
4.3.1 Data transfer format ... 31
4.3.2 IGES ... 33
4.3.3 PDDI & PDES .. 34
4.4 STEP data transfer standard ... 35
4.4.1 STEP fundamentals .. 35
4.4.2 STEP data model and data structure .. 36
4.4.2.1 EXPRESS language ... 37
4.4.2.2 Implementation methods and conformance testing 38
4.4.2.3 Integrated resources .. 38
4.4.2.4 Application Protocol (AP) .. 39
4.4.2.5 Abstract test suites ... 40
4.4.2.6 Application interpreted constructs ... 40
4.5 STEP-NC compliant machining process planning 40
4.5.1 STEP-NC fundamentals .. 40
4.5.2 STEP-NC process plan .. 42
4.5.3 STEP-NC data model and data structure .. 43
4.5.3.1 ISO 14649 (ARM) for standalone NC implementation 43
4.5.3.2 ISO 10303 AP238 (AIM) for STEP integrated CNC 45
4.5.4 STEP-NC compliant CAD/CAM system .. 46
4.5.5 STEP-NC international research and development 46
4.6 Critique .. 50
4.6.1 Product definition standards .. 50
4.6.2 NC machining process planning ... 51

Section 2 THEORETICAL RESEARCH
Chapter 5
DESIGN OF AN INTEROPERABLE STEP-NC COMPLIANT WEDM CAx SYSTEM FRAMEWORK .. 53

5.1 Introduction ... 53
5.2 Fundamentals of machining process planning .. 53
5.2.1 Representation of product and manufacturing information 53
5.2.2 Planning of machining process .. 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>STEP-NC compliant WEDM CAx system framework</td>
<td>55</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Information perspective of system framework</td>
<td>55</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Functional perspective of system framework</td>
<td>56</td>
</tr>
<tr>
<td>5.4</td>
<td>Major activities of system framework</td>
<td>58</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Feature translation</td>
<td>58</td>
</tr>
<tr>
<td>5.4.2</td>
<td>WEDM machining operation planning</td>
<td>59</td>
</tr>
<tr>
<td>5.4.3</td>
<td>WEDM process plan generation</td>
<td>60</td>
</tr>
<tr>
<td>5.5</td>
<td>Interoperable manufacturing environment</td>
<td>61</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>STEP-NC COMPLIANT INFORMATION MODELLING FOR WEDM COMPONENT MANUFACTURING</td>
<td>63</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>6.2</td>
<td>Context for STEP-NC compliant information modelling</td>
<td>63</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Integrated product and manufacturing information modelling</td>
<td>63</td>
</tr>
<tr>
<td>6.2.2</td>
<td>STEP compliant product information modelling</td>
<td>64</td>
</tr>
<tr>
<td>6.2.3</td>
<td>STEP-NC compliant manufacturing information modelling</td>
<td>64</td>
</tr>
<tr>
<td>6.3</td>
<td>STEP-NC compliant information modelling for WEDM process</td>
<td>65</td>
</tr>
<tr>
<td>6.3.1</td>
<td>WEDM information modelling</td>
<td>65</td>
</tr>
<tr>
<td>6.3.2</td>
<td>WEDM manufacturing model (MModel)</td>
<td>66</td>
</tr>
<tr>
<td>6.3.3</td>
<td>WEDM product model (PModel)</td>
<td>68</td>
</tr>
<tr>
<td>6.4</td>
<td>WEDM extended information models</td>
<td>70</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>COMPUTATIONAL ENVIRONMENT FOR STEP-NC COMPLIANT WEDM CAx PROTOTYPE SYSTEM</td>
<td>76</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>7.2</td>
<td>Overview of Wire SNIPs</td>
<td>76</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Basic components of Wire SNIPs</td>
<td>76</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Representing WEDM information models in UML</td>
<td>79</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Developing Wire SNIPs database system</td>
<td>82</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Developing Wire SNIPs application</td>
<td>83</td>
</tr>
<tr>
<td>7.3</td>
<td>Functional structure of Wire SNIPs</td>
<td>85</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Managing Wire SNIPs databases</td>
<td>85</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Planning WEDM process</td>
<td>86</td>
</tr>
<tr>
<td>7.4</td>
<td>Operational structure of Wire SNIPs</td>
<td>88</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Programming procedure of Wire SNIPs</td>
<td>88</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Generation of WEDM STEP-NC process plan</td>
<td>92</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>CASE STUDY, TESTING & RESULTS</td>
<td>93</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>93</td>
</tr>
<tr>
<td>8.2</td>
<td>Case study</td>
<td>93</td>
</tr>
<tr>
<td>8.3</td>
<td>Commercial WEDM CAD/CAM systems</td>
<td>95</td>
</tr>
<tr>
<td>8.4</td>
<td>Basis of evaluating Wire SNIPs</td>
<td>97</td>
</tr>
<tr>
<td>8.4.1</td>
<td>PEPS Solid Cut and FAPT programming procedures</td>
<td>97</td>
</tr>
<tr>
<td>8.4.2</td>
<td>PEPS Solid Cut and FAPT NC part programs</td>
<td>98</td>
</tr>
</tbody>
</table>
Section 4 RESEARCH CONCLUSIONS

Chapter 9
CONCLUDING DISCUSSION .. 105
9.1 Introduction .. 105
9.2 STEP-NC compliant WEDM CAx system framework ... 105
9.3 STEP-NC compliant WEDM information modelling .. 107
9.4 STEP-NC compliant WEDM CAx prototype system development .. 108
9.5 Testing of Wire SNIPs .. 109

Chapter 10
CONCLUSIONS & FUTURE WORK ... 111
10.1 Introduction .. 111
10.2 Major contribution to knowledge .. 111
10.3 Conclusions .. 111
10.4 Future Work ... 113
 10.4.1 Consider a complete machining process logic and rules .. 113
 10.4.2 Include graphical display in the Wire SNIPs ... 114
 10.4.3 Apply WEDM expert system to Wire SNIPs ... 114
 10.4.4 Arrange output from Wire SNIPs in XML format ... 114

REFERENCES ... 115

APPENDIX I
LIST OF AUTHOR’S PUBLICATIONS .. 131

APPENDIX II
STEP-NC PROCESS PLAN GENERATED FROM WIRE SNIPs:
FOR EXAMPLE PART 1 .. 132
FOR EXAMPLE PART 2 .. 134

APPENDIX III
CASE STUDY PROVIDED IN ISO/DIS 14649-13
FOR EXAMPLE PART 1 .. 136
FOR EXAMPLE PART 2 .. 140

APPENDIX IV
STEP-NC (ISO 14649-10) ENTITY – SETUP .. 144

APPENDIX V
NC PART PROGRAM GENERATED:
FROM FANUC PC FAPT CUT I ... 145
FROM PEPS SOLID CUT WIRE ... 147
Chapter 1

INTRODUCTION

Since the inception of numerical control technology in the early 1950s, low-level G codes (preparatory commands) and M codes (miscellaneous command) have been used to specify the motion of NC machines. Despite significant advancement made in machine development and control technology in the last 35 years resulting in the evolution of the original NC processes, such as milling, into the thermal machining process, such as WEDM, the approach to NC part programming remains relatively unchanged. The very same G & M codes are still in use today to program these state-of-the-art machining processes and impose the CNC with simple cutting motions. These codes define and control the cutting toolpath, which requires to be calculated in terms of position and feedrate. The WEDM process relies on these G & M codes to thermally degrade the component material through the application of a series of discrete electrical discharges occurring between the wire tool and the part. However, the proprietary format of the G & M codes has been the bottleneck in integrating the wide range of CAD/CAM systems used in the generation of part programs for CNC WEDM component manufacturing.

WEDM is a widely accepted non-traditional material removal process used to manufacture components with intricate shapes and profiles. It is considered as a unique adaptation of the conventional EDM process, which uses an electrode to initialise the sparking process. However, WEDM utilises a continuously travelling wire electrode made of thin copper, brass or tungsten of diameter 0.05-0.3mm. The thinner wire is commonly used to achieve sharp or small radii corners. The wire is kept in tension using a mechanical tensioning device reducing the tendency of producing inaccurate parts. During the machining process, the material is eroded ahead of the wire and there is no direct contact between the workpiece and the wire, eliminating the mechanical stresses during machining. However, the machining process may require several cuts to produce the desired shape of the part. It includes the roughing cut to remove the slug and the finishing cut to get the required dimension accuracy and surface finish quality. This is mainly due to the large amount of wear occurring on the wire during the roughing cut, thereby producing a very coarse surface finish on the machined part. WEDM process is able to machine exotic and high strength and temperature resistive (HSTR)
materials and eliminate the geometrical changes occurring in the machining of heat-treated steels.

In many CNC manufacturing environments, CAD/CAM systems are used to define the component design and machining operation processes. The CNC programmer defines the part design by using a CAD system and determines the machining operation through the use of a CAM system. The end result is a cutting toolpath written in cutter location data format, which is subsequently imported to the post-processor generating the NC part program for a vendor-specific machine controller. However, the NC part program is scrutinised with G & M codes entailing simple 'go to point' instructions, which no longer satisfy the functional requirements of the modern-day CNC manufacturing. Furthermore, the CNC has the exclusive use of G & M codes, which isolate the CNC from the other CAD/CAM functions, in terms of information sharing and exchange. Such constraints are at the basis of a need to explore a high-level process planning description and interface, which can integrate the CAD to CNC process chain.

A new data model, informally known as STEP-NC, has been developed to revolutionise the current approach of CAD/CAM programming for CNC WEDM component manufacturing. It is primarily based on the ISO 14649 standard (2003) to provide a bi-directional data interface between different CAx systems and a new breed of intelligent CNC. Current part programming practice uses vendor-specific interpreted G & M codes based on the ISO 6983 standard (1982), otherwise known as RS 274D (1979), to program a CNC WEDM machine. It produces ad-hoc information content and data format, which cannot adequately satisfy the different system functional needs of sharing and exchanging information between the systems. STEP-NC aims to solve these problems through the use of the STEP (Standard for the Transfer and Exchange of Product model data) neutral product data transfer format ISO 10303 (1994) of representing both the design and manufacturing intent. The neutral format ensures that the information would not change throughout the product life cycle or with the ever-advancing computing technology. In addition, STEP-NC seeks to capture the complete information requirements to support the operation and the control of the various CNC WEDM activities.

The integrity of standardised repositories of product and manufacturing information is crucial to the planning, operating and controlling of the WEDM process. STEP-NC's data model
seeks to specify the information about the manufacturing capability of a process by mapping it onto the design specification of a part, thereby producing a feasible machining process plan for the part. In order to facilitate the evaluation of the impact of the product design on the manufacturing process at the early stage of product development, the two information repositories are closely integrated. The result of integrating the information repositories also helps to promote interoperable manufacturing of parts at different locations/companies. These benefits are largely made possible through the sharing and exchanging of product and process knowledge among different design and manufacturing software systems, thus facilitating integrated and interoperable product design, process planning and machining.

A widely accepted method of integrating the different sources of information to support machining process planning is through information modelling. It ensures the effective representation of both the product and process knowledge, which require to be seamlessly integrated in the CNC manufacturing environment. The aim of this research is to provide an investigation into the programming of WEDM machines using a high level process planning description based on the ISO 14649 standard. This is mainly carried out by identifying the generic information models needed to support CNC manufacturing decision-making through the integration of information across the WEDM CAx to CNC process chain. As a result, it enables the information models to provide a consistent information exchange and the interoperability of product design and manufacturing information for WEDM components both from the CAD system to the CNC and CNC to CAD. This research presents a system framework that supports the various part programming and machining process planning activities for WEDM component manufacturing within a STEP-NC compliant manufacturing environment.

The major research questions explored in this thesis are:

a. that a high-level process planning description based on a new manufacturing standard can be used to describe the geometrical and manufacturing requirements of a WEDM component

b. that the information models can be used to support the interoperable manufacturing of WEDM components in the CAD to CNC process chain
The thesis is divided into four main sections, which are depicted in figure 1.1 and described as follows:

i. Background/literature review section

This section provides the introduction and scope of the research. The latter identifies the aims and objectives of the research, which lead to a number of research areas undertaken by the author. One of the research areas involves the review on the various academic researches into the WEDM process and the advent of STEP-NC for CNC manufacturing, which is also included in this section. The review on the WEDM process gives an overview of the widely accepted non-traditional material removal process, thereby providing an insight into the planning of the WEDM process. On the other hand, the review on the STEP-NC studies its implication on the programming a component for CNC manufacturing through the use a high level process planning description based on the ISO 14649 standard.

ii. Theoretical research section

This section identifies a generic system framework and the two fundamental information models supporting an interoperable CAD to CNC manufacturing within a STEP-NC environment for the WEDM process. The system framework is described by exploring the information and functional perspectives of the CAx to CNC process chain. Whereas the information models are described in the context of modelling the product and manufacturing information needed to facilitate the planning of the WEDM process through the use of the ISO 14649 standard.

iii. Experimental research section

This section outlines the development and evaluation of a prototype system based on the system framework and the information models identified in the previous section. The computational environment for the prototype system is described in this section in terms of the development, functional and operational structure to generate a STEP-NC process plan for WEDM component manufacturing. The prototype system is subsequently tested through the use of the example case study found in the ISO/DIS 14649-13. It is evaluated not only on the functionality of generating the STEP-NC process plan for the example parts but also on the information needed to adequately carry out the planning of a WEDM process.
iv. Research conclusion section

This section discusses and concludes the various research areas surrounding the design and implementation of the STEP-NC compliant CAx system for WEDM component manufacturing. It also includes appendices relating to the testing of the prototype system.

<table>
<thead>
<tr>
<th>Part 1: Background/Literature Review Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>(Chapter 1)</td>
</tr>
<tr>
<td>State-of-the-Art in WEDM</td>
</tr>
<tr>
<td>(Chapter 3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2: Theoretical Research Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of an Interoperable STEP-NC Compliant WEDM CAx System Framework</td>
</tr>
<tr>
<td>(Chapter 5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 3: Experimental Research Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Environment for STEP-NC Compliant WEDM CAx Prototype System</td>
</tr>
<tr>
<td>(Chapter 7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 4: Research Conclusions Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concluding Discussion</td>
</tr>
<tr>
<td>(Chapter 9)</td>
</tr>
</tbody>
</table>

Figure 1.1 The structure of the chapters in the thesis
Chapter 2

SCOPE OF RESEARCH

2.1 Introduction
This chapter describes the scope of the research reported in the thesis. It identifies the aims and objectives leading to a number of research areas undertaken by the author.

2.2 Research aims and objectives
The aims of the research are as follows:

a. To investigate the programming of WEDM CNC machines by using a high level process planning description based on the ISO 14649 standard

b. To explore the use of process planning information based on the ISO 14649 standard to support the interoperable CAD to CNC manufacturing of WEDM components

The objectives of the research are as follows:

i. Review the major WEDM research areas including process optimisation, process monitoring and control together with process development and applications

ii. Review the state-of-the-art NC part programming and the advent of STEP-NC in programming a component for CNC manufacturing

iii. Design a framework for a WEDM CAx system to support interoperable CAD to CNC manufacturing within a STEP-NC environment

iv. Identify the STEP-NC compliant information models for capturing the information requirements needed to perform the various WEDM machining process planning activities

v. Develop a computational prototype system based on the CAx framework and the information models to program a WEDM component for CNC manufacturing

vi. Evaluate the prototype system by using a case study and comparing it against state-of-the-art CAD/CAM systems
2.3 Scope of research
The scope of the research forming the fundamental structure of the thesis is as follows:

2.3.1 State-of-the-art in WEDM
Over the last 45 years, the WEDM process has remained as a competitive and economical machining alternative. It is capable of machining parts with varying hardness or geometrically complex shapes, which are very difficult to be machined by the traditional chip forming machining processes. This part of the literature research will review the vast array of research work, carried out from the inception to the development of the WEDM process, exploring the different methodologies of achieving the ultimate WEDM goals of optimising the numerous process parameters and improving the overall machining efficiency.

2.3.2 Evolution of STEP-NC
The interoperability of CNC manufacturing is largely achieved by the neutral data format of representing and exchanging the product and manufacturing information between different design and manufacturing software systems. This research will review the various data transfer efforts of capturing and preserving the complete information requirements to support the operation and the control of the CNC manufacturing activities. The major part of this research will describe the evolution of STEP-NC by reviewing the conventional CNC part programming methods of manufacturing a component.

2.3.3 Design of an interoperable STEP-NC compliant WEDM CAx system framework
STEP-NC has huge implications on the integration of CAx systems giving the opportunity to realise interoperable CNC manufacturing. This part of the theoretical research will investigate the use of a generic system framework, which exploits product and manufacturing information, to support the decision-making relating to WEDM process planning and the generation of the STEP-NC process plan. The framework is intended to provide a platform for facilitating the interoperable manufacturing of a WEDM component through the seamless integration of product and manufacturing information across the CAx process chain.

2.3.4 STEP-NC compliant information modelling for WEDM component manufacturing
The feasibility of planning the WEDM process is dependent on the integrity of the standardised repositories of product and manufacturing information. This research will aim to define two fundamental information models, namely the product and manufacturing models,
representing the vital information required to support the various part programming/machining process planning activities for the WEDM process. The models are based on Part 13 of ISO 14649 standard (2003), which is dedicated to the WEDM process, together with Part 10 of the standard (2004), which specifies the general machining information.

2.3.5 Computational environment for STEP-NC compliant WEDM CAx prototype system

The experimental part of the research will involve the development of a STEP-NC compliant WEDM CAx prototype system to demonstrate the viability of the information models, identified in section 2.3.4, in the application domain through the use of a WEDM example part. The system will be based on the framework, identified in section 2.3.3, and will demonstrate the use of information models for STEP-NC compliant WEDM CNC manufacturing. It is constructed on the basis of structuring the information aspect and constructing the functional aspect of the system through the use of the unified modelling language (UML) class diagrams, IDEF0 activity modelling methodology, ObjectStore database management systems (DBMS) and Java programming language.

2.3.6 Case study, testing and results

The STEP-NC compliant WEDM CAx prototype system will be evaluated with a case study based on two example WEDM parts specified in the ISO/DIS 14649-13 standard. It will be tested to gauge the system performance of planning the WEDM process and generating the process plan within a STEP-NC manufacturing environment. The viability of the STEP-NC compliant information models supporting the various WEDM product design and WEDM manufacturing process activities will also be tested. This will involve the comparison between the prototype system and two commercial state-of-the-art WEDM CAD/CAM systems, in terms of the data input/output, programming activities and process planning rules. This should enable the research to be put in perspective of today’s CAD to CNC programming systems.
Chapter 3

STATE-OF-THE-ART IN WIRE ELECTRICAL DISCHARGE MACHINING

3.1 Introduction
This chapter provides a review, which has been published in (Ho et al. 2004), on the various academic research areas involving the WEDM process. It is the sister paper to a review by Ho and Newman (2003) on die-sinking EDM. The chapter first presents the machining process overview based on the widely accepted principle of thermal conduction and highlights some of WEDM applications. The main section of the chapter focuses on the major WEDM research activities, which include the machining process optimisation together with the machining process monitoring and control. It gives an outline of the various factors affecting the machining performance and productivity, thereby providing an insight into the planning of the WEDM process, which will be discussed in detail in chapter 5. The final part of the chapter critiques the major research areas and the possible research directions.

3.2 WEDM
This section provides the basic principle of the WEDM process and the variations of the process combining other material removal techniques.

3.2.1 History of WEDM
WEDM was first introduced to the manufacturing industry in the late 1960s. The development of the machining process was the result of seeking a technique to replace the machined electrode used in EDM. In 1974, D. H. Dulebohn applied the optical-line follower system to automatically control the shape of the component to be machined by the WEDM process (Jameson 2001). By 1975 its popularity was rapidly increasing, as the process and its capabilities were better understood by the industry (Benedict 1987). It was only towards the end of the 1970s, when CNC system was initiated into WEDM that brought about a major evolution of the machining process. As a result, the broad capabilities of the machining process were extensively exploited for any through-hole machining owing to the wire, which has to pass through the part to be machined. The common applications of WEDM include the
fabrication of the stamping and extrusion tools and dies, fixtures and gauges, prototypes, aircraft and medical parts, and grinding wheel form tools.

3.2.2 WEDM process

The material removal mechanism of WEDM is very similar to the conventional EDM process involving the erosion effect produced by the electrical discharges (sparks). In WEDM, material is eroded from the workpiece by a series of discrete sparks occurring between the workpiece and the wire separated by a stream of dielectric fluid, which is continuously fed to the machining zone (Puri and Bhattacharyya 2003), as shown in figure 3.1. However, today’s WEDM process is commonly conducted on workpieces that are totally submerged in a tank filled with dielectric fluid. Such a submerged method promotes temperature stabilisation and efficient flushing especially in cases where the workpiece has varying thickness. The WEDM process makes use of electrical energy generating a channel of plasma between the cathode and anode (Shobert 1983), and turns it into thermal energy (Tsai et al. 2003) at a temperature in the range of 8,000 to 12,000°C (Boothroyd 1989) or as high as 20,000°C (McGeough 1988) initialising a substantial amount of heating and melting of material on the surface of each pole. When the pulsating direct current power supply occurring between 20,000 to 30,000Hz (Krar 1997) is turned off, the plasma channel breaks down. This causes a sudden reduction in the temperature allowing the circulating dielectric fluid to implore the plasma channel and flush the molten particles from pole surfaces in the form of microscopic debris.

![Figure 3.1 Basic elements of the WEDM process (Boothroyd 1989)]
While the material removal mechanisms of EDM and WEDM are similar, their functional characteristics are not identical. WEDM uses a thin wire continuously feeding through the workpiece by a microprocessor, which enables parts of complex shapes to be machined with exceptional high accuracy. A varying degree of taper ranging from 15° for a 100mm thick to 30° for a 400mm thick workpiece can also be obtained on the cut surface. The microprocessor also constantly maintains the gap between the wire and the workpiece, which varies from 0.025 to 0.05mm (Benedict 1987). WEDM eliminates the need for elaborate pre-shaped electrodes, which are commonly required in EDM to perform the roughing and finishing operations. In the case of WEDM, the wire has to make several machining passes along the profile to be machined to attain the required dimensional accuracy and surface finish (SF) quality. Kunieda and Furudate (2001) tested the feasibility of conducting dry machining to improve the accuracy of the finishing operations, which was conducted in a gas atmosphere without using dielectric fluid. The typical cutting rates (CRs) are 300mm²/min for a 50mm thick D2 tool steel and 750mm²/min for a 150mm thick aluminium (Kalpajian and Schmid 2003), and SF quality is as fine as 0.04-0.25µm Ra. In addition, WEDM uses deionised water instead of hydrocarbon oil as the dielectric fluid and contains it within the sparking zone. The deionised water is not suitable for conventional EDM as it causes rapid electrode wear, but its low viscosity and rapid cooling rate make it ideal for WEDM (Huntress 1978).

3.2.3 Hybrid machining processes
There are a number of hybrid machining processes (HMPs) seeking the combined advantage of WEDM with other machining techniques. One such combination is wire electrical discharge grinding (WEDG), which is commonly used for the micro-machining of fine rods utilized in the electronic circuitry. WEDG employs a single wire guide to confine the wire tension within the discharge area between the rod and the front edge of the wire and to minimise the wire vibration. Therefore, it is possible to grind a rod that is as small as 5µm in diameter (Masuzawa and Tonshoff 1997) with high accuracy, good repeatability and satisfactory straightness (Masuzawa et al. 1985). Other advantages of WEDG include the ability to machine a rod with a large aspect ratio, maintaining the concentricity of the rod and providing a wider choice of complex shapes such as tapered and stepped shapes at various sections (Masuzawa et al. 1994). Several authors (Egashira and Mizutani 2002, Langen et al. 1995, Masuzawa et al. 1989, Sun et al. 1996) have employed the WEDG process in the micro-machining of fine electrodes or pins with a large aspect-ratio, which are difficult to be
machined by traditional precision micro-machining methods such as Micro-EDM, LIGA and excimer laser drilling.

Some of the HMPs seek to improve the WEDM performance measures such as the surface integrity and the CR. For example, the ultrasonic vibration has been applied to the wire electrode to improve the SF quality together with the CR and to reduce the residual stress on the machined surface (Guo et al. 1997). On the other hand, the wire electrochemical grinding (WECG) process replaces the electrical discharge used in WEDG with an electrochemical solution to produce high SF quality part for a wide range of machining condition (Masuzawa et al. 1994). Masuzawa et al. (1994, 1997) compared the SF quality obtained from the WECG with WEDG, which is suitable for finishing micro-parts. A rotary axis has also been added to WEDM to achieve higher material removal rate (MRR) and to enable the generation of free-form cylindrical geometries (Qu et al. 2002a, Rhoney et al. 2002a). The effects of the various process parameters such as part rotational speed, wire feed rate and pulse on-time on the surface integrity and roundness of the part produced have been investigated in the same feasibility study (Qu et al. 2002b).

3.3 WEDM applications
This section discusses the viability of the WEDM process in the machining of the various materials used particularly in tooling applications.

3.3.1 Modern tooling applications
WEDM has been gaining wide acceptance in the machining of the various materials used in modern tooling applications. Several authors (Levy and Wertheim 1988, Luo et al. 1992) have investigated the machining performance in the wafering of silicon and machining of compacting dies made of sintered carbide. The feasibility of using cylindrical WEDM for dressing a rotating metal bond diamond wheel used for the precision form grinding of ceramics has also been studied (Rhoney et al. 2002a). The results showed that the WEDM was capable of generating precise and intricate profiles with small corner radii but a high wear rate was observed on the diamond wheel during the first grinding pass. Such an initial high wheel wear rate was due to the over-protruding diamond grains, which did not bond strongly to the wheel after the WEDM process (Rhoney et al. 2002b). The machining of permanent NdFeB and ‘soft’ MnZn ferrite magnetic materials used in miniature systems, which requires small magnetic parts, was studied by comparing it with the laser-cutting process (Kruusing et
al. 1999). It was found that the WEDM process yielded better dimensional accuracy and SF quality but had a slow CR, 5.5 mm/min for NdFeB and 0.17 mm/min for MnZn ferrite. A study was also done to investigate the machining performance of micro-WEDM used to machine a high aspect ratio meso-scale part using a variety of metals including stainless steel, nitronic austentic stainless, beryllium copper and titanium (Benavides et al. 2002).

3.3.2 Advanced ceramic materials

The WEDM process has also evolved as one of the most promising alternatives for the machining of advanced ceramics. Sanchez et al. (2001) provided a literature survey on the EDM of advanced ceramics, which have been commonly machined by diamond grinding and lapping. In the same paper, they studied the feasibility of machining boron carbide (B₄C) and silicon infiltrated silicon carbide (SiSiC) using EDM and WEDM. Cheng et al. (1996) also evaluated the possibility of machining ZrB₂ based materials using EDM and WEDM whereas, Matsuo and Oshima (1992) examined the effects of conductive carbide content, namely niobium carbide (NbC) and titanium carbide (TiC), on the CR and surface roughness of zirconia ceramics (ZrO₂) during WEDM. Lok and Lee (1997) have successfully machined sialon 501 and aluminium oxide-titanium carbide (Al₂O₃-TiC). However, they realised that the MRR was very low as compared to the cutting of metals such as alloy steel SKD-11 and the surface roughness was generally inferior to the one obtained with the EDM process. Dauw et al. (1990) explained that the MRR and surface roughness were not only dependent on the machining parameters but also on the material of the part.

An innovative method of overcoming the technological limitation of the EDM and WEDM processes requiring the electrical resistivity of the material with threshold values of approximately 100 Ω/cm (Konig et al. 1988) or 300 Ω/cm (Firestone 1988) has recently been explored. There are different grades of engineering ceramics, which Konig et al. (1988) classified as non-conductor, natural-conductor and conductor, which is a result of doping non-conductors with conductive elements. Mohri et al. (1996) brought a new perspective to the traditional EDM phenomenon by using an assisting electrode to facilitate the sparking of highly electrical-resistive ceramics. Both the EDM and WEDM processes have been successfully tested diffusing conductive particles from assisting electrodes onto the surface of sialon ceramics assisting the feeding the electrode through the insulating material. The same technique has also been experimented on other types of insulating ceramic materials including
oxide ceramics such as ZrO_2 and Al_2O_3, which have very limiting electrical conductive properties (Mohri et al. 2002).

3.3.3 Modern composite materials
Among the different material removal processes, WEDM is considered as an effective and economical tool in the machining of modern composite materials. Several comparative studies (Lau and Lee 1991, Lau et al. 1995) have been made between WEDM and laser cutting in the processing of metal matrix composites (MMC), carbon fibre and reinforced liquid crystal polymer composites. These studies showed that WEDM yielded better cutting edge quality and had better control of the process parameters with fewer workpiece surface damages. However, it had a slower MRR for all the tested composite materials. Gadalla and Tsai (1989) compared WEDM with conventional diamond sawing and discovered that it produced a roughness and hardness that was comparable to a low speed diamond saw but with a higher MRR. Yan et al. (2000) surveyed the various machining processes performed on the MMC and experimented with the machining of $\text{Al}_2\text{O}_3/6061\text{Al}$ composite using rotary EDM coupled with a disk-like electrode. Other studies (Guo et al. 2002, Yue et al. 1996) have been conducted on the WEDM of Al_2O_3 particulate reinforced composites investigating the effect of process parameters on the WEDM performance measures. It was found that the process parameters had little influence on the surface roughness but had an adverse effect on CR.

3.4 Major areas of WEDM research
The author has organised the various WEDM research into 3 major areas namely WEDM development, WEDM process optimisation together with WEDM process monitoring and control. The latter two research areas are discussed in this section.

3.4.1 WEDM process optimisation
Today, the most effective machining strategy is determined by identifying the different factors affecting the WEDM process and seeking the different ways of obtaining the optimal machining condition and performance. This section provides a study on the numerous machining strategies involving the design of the process parameter and the modelling of the WEDM process.
3.4.1.1 Process parameters design

The settings for the various process parameters required in the WEDM process play a crucial role in producing an optimal machining performance. This section shows some of the analytical and statistical methods used to study the effects of the parameters on the typical WEDM performance measures such as CR, MRR and SF.

3.4.1.1.1 Factors affecting the performance measures

WEDM is a complex machining process controlled by a large number of process parameters such as the pulse duration, discharge frequency and discharge current intensity. Any slight variations in the process parameters can affect the machining performance measures such as surface roughness and CR, which are two of the most significant aspects of the WEDM operation (Alekseyev and Korenblum 1989). Suziki and Kishi (1989) studied the reduction of discharge energy to yield a better surface roughness, while Luo (1995) discovered the additional need for a high-energy efficiency to maintain a high machining rate without damaging the wire. Several authors (Dauw and Albert 1992) have also studied the evolution of the wire tool performance affecting the machining accuracy, costs and performance measures.

The selection of appropriate machining conditions for the WEDM process is based on the analysis relating the various process parameters to different performance measures namely the CR, MRR and SF. Traditionally, this was carried out by relying heavily on the operator’s experience or conservative technological data provided by the WEDM equipment manufacturers, which produced inconsistent machining performance. Levy and Maggi (1990) demonstrated that the parameter settings given by the manufacturers were only applicable for the common steel grades. The settings for machining new materials such as advanced ceramics and MMCs had to be further optimised experimentally.

3.4.1.1.2 Effects of the process parameters on the cutting rate

Many different types of problem-solving quality tools have been used to investigate the significant factors and its inter-relationships with the other variables in obtaining an optimal WEDM CR. Konda et al. (1999) classified the various potential factors affecting the machining performance measures into five major categories namely the different properties of the workpiece material and dielectric fluid, machine characteristics, adjustable machining parameters, and component geometry. In addition, they applied the design of experiments
(DOE) technique to study and optimise the possible effects of variables during machining process design and development, and validated the experimental results using noise-to-signal (N/S) ratio analysis. Tarng et al. (1995) employed a neural network system with the application of a simulated annealing algorithm for solving the multi-response optimisation problem. It was found that the machining parameters such as the pulse on/off duration, peak current, open circuit voltage, servo reference voltage, electrical capacitance and table speed were the critical parameters for the estimation of the CR and SF. Huang et al. (1999) argued that several published works (Liao et al. 1997b, Scott et al. 1991, Tarng et al. 1995) were concerned mostly with the optimisation of parameters for the roughing cutting operations and proposed a practical strategy of process planning from roughing to finishing operations. The experimental results showed that the pulse-on time and the distance between the wire periphery and the workpiece surface affected the CR and SF significantly. The effects of the discharge energy on the CR and SF of a MMC have also been investigated (Rozenek et al. 2001).

3.4.1.1.3 Effects of the machining parameters on the material removal rate

The effects of the machining parameters on the volumetric MRR have also been considered as a measure of the machining performance. Scott et al. (1991) used a factorial design requiring a number of experiments to determine the most favourable combination of the WEDM parameter. They found that the discharge current, pulse duration and pulse frequency were the significant control factors affecting the MRR and SF, while the wire speed, wire tension and dielectric flow rate had the least effect. Liao et al. (1997b) proposed an approach of determining the parameter settings based on the Taguchi quality design method and the analysis of variance. The results showed that the MRR and SF were easily influenced by the table feed rate and pulse-on time, which could also be used to control the discharging frequency for the prevention of wire breakage. Huang and Liao (2003) presented the use of Grey relational and S/N ratio analyses, which also displayed similar results demonstrating the influence of table feed and pulse-on time on the MRR. An experimental study to determine the MRR and SF for varying machining parameters has also been conducted (Rajurkar and Wang 1993). The results have been used with a thermal model to analyse the wire breakage phenomena.
3.4.1.4 Effects of the process parameters on the surface finish

There are also a number of published works that solely study the effects of the machining parameters on the machined surface. Gökler and Ozanoğlu (2000) studied the selection of the most suitable cutting and offset parameter combination to get a desired surface roughness for a constant wire speed and dielectric flushing pressure. Tosun et al. (2003) investigated the effect of the pulse duration, open circuit voltage, wire speed and dielectric flushing pressure on the machined workpiece surface roughness. It was found that the increasing pulse duration, open circuit voltage and wire speed increased with the surface roughness whereas the increasing dielectric fluid pressure decreased the surface roughness. Anand (1996) used a fractional factorial experiment with an orthogonal array layout to obtain the most desirable process specification for improving the WEDM dimensional accuracy and surface roughness. Spedding and Wang (1997) optimised the process parameter settings by using artificial neural network modelling to characterise the machined workpiece surfaces, while Williams and Rajurkar (1991) presented the results of the current investigations into the characteristics of WEDM generated surfaces.

3.4.1.2 Process modelling

In addition, the modelling of the WEDM process by means of mathematical techniques has also been applied to effectively relate the large number of process variables to the different performance of the process. Spedding and Wang (1997a) developed the modelling techniques using the response surface methodology and artificial neural network technology to predict the machining process performance such as CR, SF and surface waviness within a reasonable large range of input factor levels. Liu and Esterling (1997b) proposed a solid modelling method, which could precisely represent the geometry cut by the WEDM whereas, Hsue et al. (1999) developed a model to estimate the MRR during geometrical cutting by considering wire deflection with transformed exponential trajectory of the wire centre. Spur and Schönbeck (1993) designed a theoretical model studying the influence of the workpiece material and the pulse-type properties on the WEDM of a workpiece with an anodic polarity. Han et al. (2002) developed a simulation system, which accurately reproduced the discharge phenomena of WEDM. The system also applied an adaptive control, which automatically generated an optimal machining condition for high precision WEDM.
3.4.2 WEDM process monitoring and control

The application of the adaptive control systems to the WEDM is vital for the monitoring and control of the process. This section investigates the advanced monitoring and control systems including the fuzzy, the wire breakage and the self-tuning adaptive control systems used in the WEDM process.

3.4.2.1 Fuzzy control system

The proportional controllers have traditionally been used in the servo feed control system to monitor and evaluate the gap condition during the WEDM process. However, the performance of the controllers was limited by the machining conditions, which considerably vary with the parameters settings. Kinoshita et al. (1976) investigated the effects of wire feed rate, wire winding speed, wire tension and electrical parameters on the gap conditions during WEDM. As a result, many conventional control algorithms based on explicit mathematical and statistical models have been developed for EDM or WEDM operations (Garbajs 1985, Huang et al. 1986, Pandit and Wittig 1984, Rajurkar and Wang 1990, Watanabe et al. 1990). Several authors (Liao and Woo 1997, Yan and Liao 1995) have also developed a pulse discrimination system providing a means of analysing and monitoring the pulse trains under the various machining conditions quantitatively. Although these types of control systems could be applied to a wide range of machining conditions, it could not respond to the gap condition when there was an unexpected disturbance (Yan and Liao 1998).

In recent years, the fuzzy control theory has been applied to WEDM process to achieve optimum and highly efficient machining. Several authors claimed that a control strategy implemented on a fuzzy logic control system captured the expert's knowledge or operator's experience in maintaining the desired machining operation (Boccadoro and Dauw 1995). In addition, the fuzzy logic controller did not require any comprehensive mathematical models adapting to the dynamic behaviour of the machining operation (Yan et al. 1999). Several authors (Liao and Woo 1998, Yan and Liao 1998) proposed the sparking frequency monitoring and adaptive control systems based on the fuzzy logic control and the adjusting strategies, which could be applied to a wide range of machining conditions. Liao and Woo (2000) also designed a fuzzy controller with an online pulse monitoring system isolating the discharging noise and discriminating the ignition delay time of each pulse. EDM pulses can be classified into open, spark, arc, off or short, which are dependent on the ignition delay
time, and have a direct influence on the MRR, SF, electrode wear and accuracy of the part (Cogun 1990, De Bruyn and Pekelharing 1982).

3.4.2.2 Wire inaccuracy adaptive control systems

The occurrence of wire breakage during WEDM is one of the most undesirable machining characteristics greatly affecting the machining accuracy and performance together with the quality of the part produced. Many attempts have made to develop an adaptive control system providing an online identification of any abnormal machining condition and a control strategy preventing the wire from breaking without compromising the various WEDM performance measures. This section reports research from a collection of published work involving the adaptive control of wire breakage, wire lag and wire vibration.

3.4.2.2.1 Wire breakage

A wide variety of the control strategies preventing the wire from breaking are built on the knowledge of the characteristics of wire breakage. Kinoshita et al. (1982) observed the rapid rise in pulse frequency of the gap voltage, which continued for about 5-40 ms before the wire breaks. They developed a monitoring and control system that switched off the pulse generator and servo system preventing the wire from breaking but it affected the machining efficiency. Several authors (Kunieda et al. 1990, Shoda et al. 1992) also suggested that the concentration of electrical discharges at a certain point of the wire, which caused an increase in the localised temperature resulting in the breakage of the wire. However, the adaptive control system concentrating on the detection of the sparking location and the reduction of the discharge energy was developed without making any considerations to the MRR. The breakage of the wire has also been linked to the rise in the number of short-circuit pulses lasting for more than 30 ms until the wire broke (Tanimura et al. 1977).

Other authors (Rajurkar et al. 1991) argued that the wire breakage is correlated to the sudden increase in sparking frequency. It was also found that their proposed monitoring and control system based on the online analysis of the sparking frequency and the real-time regulation of the pulse off-time affected the MRR. Liao et al. (1997a) remedied the problem by relating the MRR to the machining parameters and using a new computer-aided pulse discrimination system based on the pulse train analysis to improve the machining speed. Whereas Yan and Liao (1996a, 1996b) applied a self-learning fuzzy control strategy not only to control the
sparking frequency but also to maintain a high MRR by adjusting in real time the off-time pulse under a constant feed-rate machining condition.

The breaking of the wire is also due to the excessive thermal load producing unwarranted heat on the wire electrode. Most of the thermal energy generated during the WEDM process is transferred to the wire while the rest is lost to the flushing fluid or radiation (Rajurkar et al. 1991). However, when the instantaneous energy rate exceeds a certain limit depending on the thermal properties of the wire material, the wire will break. Several authors (Dekeyser et al. 1985, Jennes et al. 1984, Obara et al. 1995) investigated the influence of the various machining parameters on the thermal load of the wire and developed a thermal model simulating the WEDM process. In addition to the sparking characteristics or the temperature distribution, the mechanical strength of the wire also has a significant effect on the occurrence of the wire breakage. Luo (1999) claimed that the wire material yielding and fracture contributed to the wire breakage, whilst an increase in temperature aggravates the failure process.

3.4.2.2 Wire lag and wire vibration

The main factors contributing to the geometrical inaccuracy of the machined part are the various process forces acting on the wire causing it to depart from the programmed path. These forces include the mechanical forces produced by the pressure from the gas bubbles formed by the plasma of the erosion mechanism, axial forces applied to straighten the wire, the hydraulic forces induced by the flushing, the electro-static forces acting on the wire and the electro-dynamic forces inherent to the spark generation (Dauw and Beltrami 1994, Kinoshita et al. 1984).

As a result, the static deflection in the form of a lag effect of the wire is critically studied in order to produce an accurate cutting tool path. Several authors (Huang and Liao 1997, Luo 1999, Puri and Bhattacharyya 2003) performed a parametric study on the geometrical inaccuracy of the part caused by the wire lag and attempted to model WEDM process mathematically. Wire lag is the difference between the actual and the intended wire positions. Whereas, Beltrami and Dauw (1996) monitored and controlled the wire position online by means of an optical sensor with a control algorithm enabling virtually any contour to be cut at a relatively high cutting speed. A number of geometric tool motion compensation methods, which increased the machining gap and prevented gouging or wire breakages when cutting
areas with high curvatures such as corners with small radii have also been developed (Dekeyser and Snoeys 1989, Wang and Ravani 2003). Lin et al. (2001) developed a control strategy based on the fuzzy logic to improve the machining accuracy and concentrated sparking at corner parts without affecting the cutting feed rates.

In addition, the dynamic behaviour of the wire during WEDM is also restrained to avoid cutting inaccuracies. There were a few discussions on the design and development of a monitoring and control system for compensating the behaviour of the wire vibration (Enache and Opran 1993, Rajurkar et al. 1991). Dauw et al. (1989) also reported that the vibration of the wire could be substantially reduced when the wire and the wire guides were completely submerged in the working tank filled with deionised water. Several authors (Mohri et al. 1998) derived a mathematical model analysing the transient response of the wire vibration based on the force acting on the tool wire in a single discharge process. A number of authors (Rajurkar and Wang 1997, Snoeys et al. 1983) reviewed the research and development of the various advanced monitoring and control systems used in EDM and WEDM processes.

3.4.2.3 Self-tuning adaptive control systems

In recent years, the WEDM research and development has explored control strategies adjusting to the variation in the power density required in machining a workpiece with varying thickness. Several authors (Kinoshita et al. 1982, Tanimura et al. 1977) found out that a change in the workpiece thickness during machining led to an increase in the wire thermal/power density and an eventual breaking of the wire. The power density in the gap and on the wire is defined as the ratio of discharge power to the discharge distribution length or workpiece height (Dekeyser et al. 1985). Rajurkar et al. (1994, 1997) proposed an adaptive control system with a multiple input model that monitored and controlled the sparking frequency according to the online identified workpiece height. Other authors (Huang et al. 1986) developed a system that involved an explicit mathematical model requiring a number of experiments and statistical techniques. Yan et al. (2001) used neural networks to estimate the workpiece height and the fuzzy control logic to suppress the wire breakage when a workpiece with variable height was machined.

The application of a knowledge-based control system to control the adverse WEDM conditions has also been experimented. Snoeys et al. (1988) proposed a knowledge-based system, which comprised of three modules, namely work preparation, machining process
control and operator assistance or fault diagnosis, enabling the monitoring and control of the WEDM process. The work preparation module determined the optimal machining parameter settings, while the operator assistance and fault diagnostics databases advised the operators and diagnose the machining errors. Thus, the capabilities of these modules increased the amount of autonomy given to the WEDM machine. Huang and Liao (2000) have also indicated the importance of the operator assistance and fault diagnostics systems for the WEDM process. They proposed a prototype artificial neural network-based expert system for the maintenance schedule and fault diagnosis of the machining process. Dekeyser et al. (1988) developed a thermal model integrated with an expert system for predicting and controlling the thermal overload experienced on the wire. Although the model increased the level of machine autonomy, it required a large amount of computation, which slowed down the processing speed and undermined the online control performance.

However, the study into the CAD/CAM system and the CNC for the WEDM process has shown little research interest. This is mainly due to the complex system architectural structure involving the use of the different control systems to perform the machining process and the control strategies. Yang and Park (2002) attempted to resolve the issue by designing and implementing an open architecture CNC consisting of an NC kernel for system integration and a four-constituent module for system function. The latter was made up of an operation-planning module, a motion control module, a discharge control module and a discrete I/O control module. Kruth et al. (1988) developed a set of modular software combining a generalised NC post-processor with a WEDM technological processor and a WEDM process-planner, allowing the system user to program any type of 5-axis WEDM machine by using off-the-shelf commercial CAD/CAM system. EI-Midnay et al. (2000) also used similar modular software combination to provide the automatic correction for maximum taper angle and the automatic creation of the threading and tagging location. DeVries et al. (1990) argued that for the CAM modules and the CAPP software application software to be integrated transparently into the basic CAD/CAM system while remaining totally independently of any specific CAD/CAM system was through the use of a neutral CAD programming interface.

3.5 Critique
The author has classified the wide range of published works relating to the WEDM process into three major areas, namely optimising the process variables, monitoring and control the
process, and WEDM developments. This section discusses the classified research areas and the possible future research directions, illustrated in figure 3.2.

Figure 3.2 Classification of major WEDM research areas
(corresponding section numbers are in brackets)

3.5.1 Optimising the process variables

The optimisation of the WEDM process often proves to be a difficult task owing to the many regulating machining variables. A single parameter change will influence the process in a complex way (Scott et al. 1991). Thus, the various factors affecting the machining process have to be understood in order to determine the trends of the process variation, as discussed in section 3.4.1.1. The selection of the best combination of the process parameters for an optimal machining performance involves analytical and statistical methods. However, it is very complicated to relate the input process parameters with the output performance measures and derive an optimal result using a simulation algorithm. The CR, MRR and SF are usually adopted as the measures of the machining process performance. Nevertheless, these methods provide an effective means of identifying the variables affecting the machining performance.

In addition, the modelling of the process is also an effective way of solving the tedious problem of relating the process parameters to the performance measures. As mentioned in section 3.4.1.2, several attempts have been carried out to model the process investigating into the influence of the machining parameters on WEDM performance and identifying the optimal machining condition from the infinite number of combinations. As a result, it provided an accurate dimensional inspection and verification of the process, yielding a better stability and higher productivity for the process. However, the random and complex nature of the erosion process in WEDM requires the application of deterministic as well as stochastic
techniques (Williams and Rajurkar 1991). Therefore, the optimisation of the process will remain a key research area matching the numerous process parameters with the performance measures.

3.5.2 Monitoring and control the process

Over the years, monitoring and control systems have made an important contribution in minimising the effect of disturbances on the WEDM performance. The multi-parameter machining settings have made it difficult to clearly understand and obtain the optimal machining conditions. It requires a control algorithm that is often based on explicit mathematical and statistical models to cope with the machining process. However, the application of fuzzy control logic has brought about a drastic change to the conventional way of monitoring and controlling the machining process. The fuzzy control logic is able to consider several machining variables, weigh the significant factors affecting the process and make changes to the machining conditions without applying the detailed mathematical model, as mentioned in section 3.4.2.1. In addition, the feasibility of applying an expert system capable of giving advice and solving problems has also been explored (Snoeys et al. 1988). Such a system would greatly appeal to the shop floor operational needs demanding unattended WEDM operation.

The risk of wire breakage and the bending of the wire have also limited the efficiency and accuracy of the WEDM process. The occurrence of the wire breakage directly reduces the already low machining speed affecting the overall productivity of the machining process. Although, the control strategies reported in section 3.4.2.2 were designed to solve the problems of wire breakage, they solely relied on the indication of the possible occurrence and generated inadequate results for investigating the root cause of the wire breakage phenomenon. These strategies might therefore be deemed to be a setback when machining a workpiece with variable heights requiring a drastic change in the machining conditions.

In addition, the wire vibrational behaviour and static deflection easily influence the geometric accuracy of the part produced. The typical solutions to these problems are often very conservative in nature by increasing the machining gap or reducing the discharge energy, which is regarded to be a main drawback for the WEDM process efficiency. Figure 3.3 shows the considerable amount of research work concentrating on the improvement of the inaccuracy caused by the wire through the application of an adaptive control system. Jennes
and Snoey (1984) believed that the traditional research purpose was not to improve machining efficiency, but to prevent wire rupture during the machining process. Hence, one possible new WEDM challenge and future work area will be steered towards attaining higher machining efficiency by acquiring a higher CR and MRR with a low wire consumption and frequency of wire breakage.

![Distribution of the collected WEDM research publications](image)

Figure 3.3 Distribution of the collected WEDM research publications

3.5.3 WEDM developments

The WEDM process is a suitable machining option in meeting the demands of today's modern applications. It has been commonly used in the automotive, aerospace, mould, tool and die making industries. WEDM applications can also be found in the medical, optical, dental, jewellery industries, and in the automotive and aerospace R&D areas (Stovicke 1993). Its large pool of applications, as shown in figure 3.3, is largely owed to the machining
technique, which is not restricted by the hardness, strength or toughness of the workpiece material. As mentioned in section 3.3, the machining of the HSTR, modern composite and advanced ceramic materials, which are showing a growing tendency in many engineering applications, has also been experimented. It has replaced the conventional means of machining ceramics, namely ultrasonic machining and laser beam machining, which are not only costly but damage the surface integrity of the ceramic component. However, with the introduction of over 20 non-traditional machining processes in the past 50 years and the rapid growth in the development of harder, tougher and stronger workpiece materials (Yeo et al. 1997), the WEDM process inevitably has to be constantly rejuvenated in order to compete and satisfy the future crucial machining requirements.

In addition, the WEDM process has sought the benefits of combining with other material removal methods to further expand its applications and improve the machining characteristics. The author has classified WEDM machine into the various physical characteristics, which clearly distinguished the different types of machine features affecting the performance measures, machining capacity and auxiliary facilities, as shown in figure 3.4. One of the most practical and precision HMP arrangements is the WEDG process used mainly to produce small size and complicated shape thin rod, which can be easily bent or broken by the lateral force when using a conventional grinding process. The precision of the CNC system is also partly responsible for the accuracy of the WEDG (Snoeys et al. 1986). Therefore, the HMP processes, in particular the WEDG process, will continue to receive intense research attention especially in the growing field of microelectronics circuitry manufacturing.

There is also a major push toward an unattended WEDM operation attaining a machining performance level that can be only achieved by a skilled operator. Such a goal has been partly fulfilled through the application of CNC to control the machining strategies, to prevent wire breakage and to automate the self-threading systems. An environmentally friendly and high-capacity dielectric regeneration system, which autonomously maintains the quality of the dielectric circulating within the WEDM machine, has also been experimented (Levy 1993). However, due consideration still has to be given to improving WEDM performance and enhancing the level of automation for future integration of the EDM and WEDM processes within the CIM environment (DeVries et al. 1990). By doing so, it would be able to reasonably meet the shortage of highly skilled EDM/WEDM operators and achieve a more cost efficient and cost effective machining operation.
This chapter has aimed at understanding the interrelationship between the various factors affecting the machining process and identifying the optimal machining conditions. However, the true potential of these works has been confined by the use of the low-level G & M codes to program the WEDM machine. The programming/machining parameters and strategies affecting the transient WEDM sparking behaviour or the risk of wire breakages have not been adequately represented by these codes. These programming/machining functionalities are currently represented by different WEDM machine vendors using their own unique codes, see section 8.4.2. To further complicate the problem, it is not easy to gain access to the proprietary WEDM CAD/CAM and CNC system architecture, limiting the research and development into the interoperable manufacturing of WEDM parts across the CAx to CNC process chain. Thus, the implementation of STEP-NC to the WEDM process planning is a vital step of overcoming the ambiguous representation of the information relating to the machining operations. This research area has yet to be explored by the research community and is listed as one of the author’s research objectives studying the implication of STEP-NC on the machining/programming capabilities of the WEDM process.
Chapter 4

EVOLUTION OF STEP-NC

4.1 Introduction
This chapter describes the evolution of STEP-NC by reviewing the conventional methods of part programming a component for CNC manufacturing. It also describes the various international efforts of specifying the data transfer standard representing and exchanging the product and manufacturing information between the different CAx and CNC systems. The major part of the chapter presents a structured view of the STEP-NC compliant information models defining the different information requirements needed to support the various CNC machining process planning activities. The final part of the chapter identifies the major research and development into STEP-NC carried out by the international STEP-NC community, mainly from Europe, Korea, Switzerland and USA.

4.2 Conventional NC part programming methods
This section reviews the different low level yet widely accepted conventional part programming methods.

4.2.1 Manual part programming
The conventional methods of programming a part rely on the low level information, which is specified in G & M codes based on the ISO 6983 standard (1982), to control the machining operations. The G codes provide the machine controller with the centre line of the cutting tool path while the M codes provide the simple switching instructions for a particular mode of operation, such as coolant on/off or spindle start/stop. Other machine control information is also included in the ISO 6983 part program, such as the machining sequence (N identifier), feed (F identifier), speed (S identifier) and tool (T identifier). However, these basic commands deliver only limited information to the machine controller, excluding the valuable information such as part geometry and process plan implicated in the machine control codes, making it nothing but an executing mechanism completely unaware of the motions being executed (Suh et al. 2002).
Traditionally and still today, part programmers have to determine the machine control codes, which include the G & M codes together with the other machine control information for the part program by studying the engineering drawing of the component and calculating the centre line of the cutting tool path. These machine control codes have to be specified in a word address format/NC data format. The part program is then entered into and interpreted by the machine tool controller to perform the specified machining operations at the machine tool. Such a tedious manual programming process is clearly time consuming and potentially prone to human errors, especially when programming a component of complex shape. In addition, the accuracy of the machined component is compromised by the part programmer’s knowledge of the machining practice and the machine tool, and their individual skills of programming a component.

4.2.2 Computer-assisted part programming
The advent of a computer-assisted part programming language in the 1950’s brought several programming benefits to the traditional onerous approach of manual programming a component. It relieved the part programmer from the tedious mathematical calculation of the cutting tool path and offsets by coding the component geometry and the machine control information into a part program using the part programming language. One such language was automatically programmed tools (APT) (1987). The part program was then compiled into a machine independent data format, commonly known as the cutter location data file; thus eliminating manual programming errors. Subsequently, the cutter location data was converted into the machine specific control codes by means of a vendor-specific post-processor dedicated to a particular machine controller or machine tool. Other programming aids included the canned cycle and the subroutine or macro, which allowed the part programmer to perform a sequence of repetitive machining operations using a special preparatory command or a single group of variable parameters.

However, the use of a vendor-specific post-processor caused a major data exchange problem between different part programming languages and machine controllers. The post-processor customised the part program with vendor-specific extensions of the ISO 6983 standard for a particular model of the machine controller. This was largely due to the machine tool manufacturers producing new machining features, which could not be fully satisfied by the traditional machine control codes (Jones 1992), for example the G81 drilling canned cycle. Though the post-processors were specific to individual machine controllers, the basic G & M
codes were implemented to perform the drilling canned cycle, such as the G00 rapid traverse and G01 linear interpolation commands. However, the NC data format and the proprietary technique behind the canned cycle vary from machine vendor to machine vendor. In order to facilitate the processing of a wide variation of machine controllers, part programming languages were supplied with a library of vendor-specific post-processors, which were also required in the CAD/CAM method of programming a component, as shown in figure 4.1.

![Figure 4.1 Evolution of NC Technology (adapted from McMahon and Browne 1998)](image)

4.2.3 CAD/CAM part programming

The only major difference between the computer-assisted and the CAD/CAM methods of part programming is in the translation of the cutting tool path from the component geometry. In CAD/CAM part programming, the cutter location data is directly translated from the CAD
part geometry using a CAM program. As a result, it removes the need to encode the part geometry and the tool motion, eliminating the risk of errors in interpreting the geometry and reducing the time taken in preparing the cutting tool path (McMahon and Browne 1998). The other advantages in using a CAD/CAM system include the visual verification of the part program, which provides a graphical display of the machining operation, and the editing of the part program, which uses the interactive editing graphics.

Although, both the part programming language and the CAD/CAM system rely on the part geometry to obtain machine control codes, both methods do not support complex part geometry, such as spline interpolation. The machine control codes have been formalised from the more than 30-year-old ISO 6983 standard, which only supports simple tool trajectories that are inadequate in satisfying the demands of controlling 5 or more axes of machining. As a result, machine controller vendors add their own codes to the existing G & M codes. This is further complicated by the one-way flow of information discouraging any editing from the downstream to the upstream design and manufacturing computing software applications, referred in figure 4.1. All the conventional routes of part programming have the similar information flow problem largely due to the traditional means of representing and exchanging process information between different design and manufacturing software systems.

4.3 Data transfer standards
This section describes a few data transfer standards relying on the neutral data format to address the concept of communicating product data among the different CAx systems, namely the IGES, PDDI and PDES standards.

4.3.1 Data transfer format
Traditionally, vendors made CAD packages with a diverse range of functions and performances, which are dependent on algorithms with closed and proprietary data formats, as a key to control and retain the ownership of a customer base (Thilmany 2001). As a result, these CAD packages create communication problems of translating product data between the corresponding systems due to the presence of vendor-specific NC data formats. The problem becomes more apparent when a new system is added to an existing system, which increases the number of translators required to directly convert and transfer the data to the newly added system, refer to figure 4.2a. The total number of translators needed is represented by the formula N(N-1), where N is the number of systems involved in the transferring of the files.
(Bhandarkar et al. 2000). This is in complete contrast to the indirect means of translating the data by using an intermediary file called the neutral data file.

The neutral data format seeks to offer an equitable solution of integrating disparate systems together to collectively perform an application. It involves using a pair of indirect translators, which are independent of the existing and future systems, to pre-process the native data format from the source system into the neutral data format and subsequently post-process the neutral format into the native format of the target system, as shown in figure 4.2b. Since, the indirect translation method does not require constructing a new interface whenever a new system is installed, the cost incurred is relatively low as compared to the direct method. Moreover, the indirect translator philosophy protects against system obsolescence and eliminates dependence on a single-system supplier (Zeid 1991), thereby promoting the integration among different design and manufacturing software systems.

The development of the neutral data format is also prompted by the industrial move toward the automation of NC part programming. It aims to enable the use and reuse of the valuable product and manufacturing data among the different design and manufacturing software systems encountered over the entire product life cycle. The structure of the neutral database covers a minimum definition of the design and manufacturing intent so as to satisfy the
information requirements to machine a part. More importantly, the common underlying data structure of the part programming system must be extensive so that it can provide the data input required for each new function and accept the results of each new function (Young 1994).

4.3.2 IGES

The IGES (initial graphics exchange specification) was the first data exchange effort targeted towards the transfer of product data between corporate systems and suppliers'/customers' systems. Its early version 1.0 (ANSI-Y14.26M 1981) defined a collection of information structures, which could be classified into geometry and non-geometry entities, to be transferred between systems by using a vendor independent format, ASCII (American Standard Code for Information Interchange). ASCII standard (1991) code is used for information interchange among data processing systems and data communications systems in the United States. The geometry entities consisted of the definition of simple physical shapes, such as curve, solid model and part feature, while the non-geometry entities provided the graphical characteristics of the entities, such as dimension and text (Bhandarkar et al. 2000).

However, due to the then 80-column file format, the size of the neutral file was found to be large requiring a long transmission time between different software systems. The file was also very ambiguous due to the complicated way of arranging the data. Such limitations had been widely dismissed as highly inefficient, which prompted the development of the German DIN 66301 (1986), which allowed a higher order of representing the surface geometry, and the French Z 68300 (1985), which had a more compact format.

Although IGES has alleviated the problems in the later version, it has yet to be accepted as a formal definition language for data exchange. The revised version 5.3 (ANSI-US-PRO/IPO-100 1996) has merely increased the coverage of the specification by extending the complexity of the entities, such as the spline curves and surfaces, to support the growing number of CAD applications. However, vendor industrial practice was originally to only interpret and implement those entities that were relevant to their systems, which in effect caused discrepancies with systems executing IGES on a different set of entities. This was further made inconsistent by the insufficient number of conformance clauses resulting in an incomplete translation or loss of information. All of these issues, which have been overlooked by the IGES community, have contributed to the development of the STEP standard (Reed et al. 1990).
4.3.3 PDDI & PDES

The eventual need to develop an extensive data transfer standard incorporating the essential information required by the various product life cycle related applications has been attempted by a number of organisations. The PDDI (product definition data interface) was developed by McDonnell Aircraft Corporation from the ICAM (integrated CAM) project (ICAM 2005, Shah and Rogers 1988), which expanded the IGES concepts through the application of manufacturing information into its standard format. The standard format was intended to serve as the information interface between engineering and manufacturing activities, such as process planning, NC programming, NC verification, quality assurance, tool design, robotics and other (Goldstein et al. 1998, Zeid 1991). Although the PDDI standard format could cater for discrete mechanical components of either sheet metal, turned, composite and machined configuration, it could not deal with component assemblies.

The PDES (product data exchange specification) was initialised by the IGES organisation aiming to establish a mechanism for complete product model data exchange (Shah and Rogers 1988). It was based on the discipline of information modelling by focusing on both the logical information being captured and the physical mechanism of data exchange. PDES was designed to facilitate the data exchange within a number of applications including architecture, engineering, construction, mechanical features, finite element modelling and printed circuit board manufacture. The research into the exchange of product definition data was not only confined to the US, in 1984 a five-year ESPRIT (European strategies programme for research into information technology) research project called CAD*I (CAD Interfaces) led by Germany, focused on European developments in data exchange standards (Zeid 1991). CAD*I mainly concentrated on product model data exchange for finite element analysis based on the use of schemas formally defined by using a data modeling language (Kemmerer 1999).

However, it was the ISO Technical Committee 184/Sub-Committee 4 (TC184/SC4) that has driven the effort to replace the bewildering array of emerging data exchange standards with an agreed international standard of representing and exchanging the product data. TC184/SC4 has coordinated and drawn together several world-wide projects including the VAD-FS (Verband Der Automobilindustrie Flachen Schnittstelle) (1986), SET (Standard d'Echange et de Transfert) (1985), PDDI and PDES into a single unified global standard specified as ISO 10303 (1994) or more commonly known as STEP.
4.4 STEP data transfer standard

This section provides the fundamentals of the STEP data transfer standard. It also describes the formal data specification language called EXPRESS and the STEP data model and structure.

4.4.1 STEP fundamentals

STEP provides a complete representation of the product information together with the mechanisms and definitions enabling product data to be exchanged among the different computer systems encountered during the product life cycle. Unlike IGES, providing product information merely for drawing and 3D modelling purposes, STEP addresses the issue of sharing product information among the diversified engineering applications, such as design, analysis, process planning, manufacturing, maintenance and disposal. The product information aims to include not only the geometrical representation of the product, but also the process models, such as the manufacturing features, tooling, manufacturing strategies and manufacturing processes for the various stages of product development (Hardwick 2000). Thus, it acts as an effective means of fusing the manufacturing efforts among corporate partners and suppliers across the diverse computer environments through the use of the same product information.

STEP became a full standard in 1994 and has since gained considerable acceptance by the industry, notably in the aerospace and defence, automotive and ship building, electronics and manufacturing sectors (Smith 2002). This is largely due to STEP drawing on the experiences and improvements of its predecessors through a number of areas namely (Owen 1993):

- **Formal specification language** – uses an information modelling methodology called EXPRESS (ISO10303-11 2004) to specify the information model in STEP.

- **Three-layer architecture** – comprises of

 i. Logical layer containing the implementation methods, which describes how EXPRESS is mapped to the physical files and other storage mechanisms,

 ii. Physical layer containing the resource information models, which provides the context-independent information, such as the description of the geometry, topology or product structure, and

 iii. Application layer containing the Application Protocols (APs), which holds information related to a particular application domain, such as draughting or electrical product modelling.
• Conformance clauses – includes conformance testing methodology and a series of test sets to ensure conformance to the standard.

The STEP standard has also made a clear distinction between the information models and the infrastructure in order that the product data models can be applied in a number of ways. For example, it is organised into the APs with a unique sets of entities chosen for specific product, process or industry. Figure 4.3 shows the STEP standard architecture, in which the information models are depicted in shades and the infrastructure is not shaded.

4.4.2 STEP data model and data structure

The STEP standard is being progressively developed as a series of separate standards called parts. Each part is logically classified as a class representing the different product data models covering the full life cycle of a product. As a result, the large size of the standard is broken up into a number of classes making it simple for the CAD vendors to implement the appropriate part of the standard. These classes include (ISO10303-1 1994, McMahon and Browne 1998):
- Introductory (Parts 1-9) currently comprising of Part 1 providing an introduction to the concepts and fundamental principles of STEP.
- Description methods (Parts 11-19) comprising of Part 11 and 12 relating to the standardised method, known as the EXPRESS language used to describe STEP entities.
- Implementation methods (Parts 21-9) describing how EXPRESS is mapped to physical files and other storage mechanisms.
- Conformance testing methodology and framework (Parts 31-9) providing methods for testing implementations, and test suites to be used during conformance testing.
- Integrated resources (IRs) (Parts 41-99, 101-99) including generic resources such as geometry and structure representation (41-99), and application resources such as draughting and finite element analysis (101-99).
- Application Protocols (Parts 201-99) describing implementations of STEP specific to particular industrial applications, and are associated with implementation methods to form the basis of a STEP implementation.
- Abstract test suites (Parts 301-99) providing test suites for each of the APs.
- Application interpreted constructs (Parts 501-) describing various model entity constructs, and specific modelling approaches.

4.4.2.1 EXPRESS language

EXPress is a formal information modelling language, which is used to specify the semantics of the product data model common to many applications. The semantics of the data model are expressed in an object-oriented manner facilitating the extension of the data model upon any changes or updates. Therefore, it is easy for the engineers or programmers to assemble a large product model created in different CAD systems. The basic element of the EXPRESS language is the entity, which specifies the characteristics, constraints and relationship with other entities (ISO10303-11 2004). It provides a far richer set of language tools for expressing the semantics of the data types within a translation scheme than the standard general-purpose modelling methodologies, such as NIAM and IDEF1X, which only aid in the conceptual definition of the relational databases (Eastman 1994). The use of these parts or so called 10's series of the STEP standard produces a consistent representation and avoids ambiguity of the product information between the different CAD systems. The graphical notation of the entity and attribute relationship is also defined in the ISO 10303-11 standard and is called EXPRESS-G (2004).
4.4.2.2 Implementation methods and conformance testing

STEP places a high emphasis on the implementation and conformance of the complete information model supporting a specific application. The implementation methods class or the 20’s series define the exchange file structure and the application programming interface to the STEP database. For example:

The latter two parts of the STEP standard have been momentarily gaining research attention due to the acceptance of Internet-based technology enabling Web based manufacturing or e-manufacturing. More companies are adding the requisite machine intelligence, Web connectivity, and e-commerce and collaborative manufacturing software systems for implementing e-manufacturing (Hardwick 2001, Waurzyniak 2001, Xu and He 2004).

Conformance testing is covered by two series of 10303 parts, namely the conformance testing methodology and framework, and abstract test suites, which will be discussed in section 4.4.2.5. The conformance testing methodology and framework or the 30’s series define the procedures and tools required to undertake the data and application verification, e.g. ISO 10303-31 (1994) specifies the general concepts for the conformance testing methodology and framework. The foundation for the conformance testing concepts, methods and vocabulary were modelled after the ISO 9646 Open Systems Interconnection (OSI) standards incorporating a built-in basis for assessing conformance of implementations into the STEP architecture (Kemmerer 1999).

4.4.2.3 Integrated resources

The data content defined in this part of the STEP standard provides the building block for the development of the APs. The 40-90’s series include the generic resource information models, which support general applications, e.g. ISO 10303-41 (2000) specifies the fundamentals of product description and support, ISO 10303-42 (2003) specifies the geometric and topological representation. As for the 100’s series, they include the application resources, which support
a specific application or a class of application, e.g. ISO 10303-101 (1994) applies to
draughting, while ISO 10303-104 (2000) applies to finite element analysis. The product data
is represented in an application-independent format and is only implemented via an AP.

4.4.2.4 Application Protocol (AP)
The APs, or the 200’s series, are used to specify the representation of product information for
one or more particular life cycle stages of a specific product class. It is expected that many
APs may be developed to support a wide range of industrial applications that STEP will serve.
They are constructed from a set of IRs, which defines the fundamental constructs that can be
specialised and applied for a wide variety of applications such as:
- AP 203 (1994) - configuration controlled 3D designs of mechanical parts and assemblies
- AP 214 (2003) - core data for automotive mechanical design processes
- AP 219 (2002) - dimensional inspection information exchange
- AP 224 (2000) - mechanical product definition for process planning using manufacturing
 features
- AP 240 (2003) - Process plans for machined products

The APs also include the context in which they are to be implemented, and a mapping
indicating which particular task they perform in the application. This is part of the basic
strategy of the STEP standard specifying the lower-level APs defined within a common
framework, allowing them to be integrated at the enterprise level (Eastman 1994). APs are
based on these four main ideas (Bloor and Owen 1991):

i. Scope and context of application,
ii. ARM (application reference model) defining the information requirements needed for a
particular application,
iii. AIM (application interpreted model) satisfying the information requirements given in
the ARM by using the STEP constructs, and
iv. Conformance requirements and test procedures for compliance with the APs.

The primary difference between the ARM and the AIM is the degree to which they use the
STEP representation methods and technical architecture (Feeney et al. 2003). ARM is
defined as an information model that describes the information requirements and constraints
of a specific application context (ISO10303-1 1994). Whereas, the AIM is defined as an
information model that uses the integrated resources necessary to satisfy the information requirements and constraints of an application reference model within an AP (ISO10303-1 1994). Such a difference has an enormous implication on the implementation of STEP-NC, which will be discussed in the section 4.5.3.

4.4.2.5 Abstract test suites
The abstract test suites are standardized in the ISO 10303-300 series containing the set of abstract test cases to support the conformance testing of an implementation for an AP. Each abstract test case specifies input data to be provided to the implementation under test, along with information on how to assess the capabilities of the implementation (Kemmerer 1999). STEP developers standardized the abstract test suites in order to alleviate the informal development of multiple test suites by various testing groups (McKay et al. 1994). One such abstract test suite is the ISO/TS 10303-304 (2001) for mechanical design using boundary representation.

4.4.2.6 Application interpreted constructs
The application interpreted constructs are reusable groups of information-resource entities that make it easier to express identical semantics in more than one AP (Nell 2005). An interpreted construct is a common interpretation of the integrated resources that supports interoperability among the APs. For example, ISO 10303-514 (1999) specifies the application interpreted construct, which specialises the generic constructs from ISO 10303-42, for the definition of an advanced boundary representation solid with explicit topology and elementary or free-form geometry.

4.5 STEP-NC compliant machining process planning
This section reviews the basic fundamentals of STEP-NC, which seeks to standardise the information about CNC machining by adding to parts represented in the STEP product data model.

4.5.1 STEP-NC fundamentals
ISO 14649 or more informally known as STEP-NC aims to offer a solution to overhaul the conventional routes of part programming a component. It is an extension of STEP that defines data representation workingsteps, or a library of specific operations that might be performed on a CNC machine tool (Hardwick and Loffredo 2001). Figure 4.4 shows the
relationship between the STEP and the STEP-NC standards. STEP-NC is the end result of the a project developed by the ISO TC184/SC1 and TC184/SC4 with the combined support of the IMS (Intelligent Manufacturing System) project, which was completed in 2001, named STEP-NC in Europe and Asia, and Super Model in the USA (Allen et al. 2003). It seeks to specify all the information requirements needed to carry out the different CNC machining processes by enhancing the design information with the associated manufacturing information. These information requirements include the billet descriptions, inspection quality tolerances, manufacturing features, set up procedure and tooling requirement. STEP-NC uses an external process plan generator making use of feature, process and cutting tool recognition tools to create the machining instructions. The end result is a detailed high-level process plan presented as a workplan consisting of several workingsteps needed to execute the various CNC machining operations. The term ‘process plan’ is used throughout the thesis to refer to the richer data output produced from the STEP-NC route of part programming.

Figure 4.4 The relationship between
STEP (ISO 10303) and STEP-NC (ISO14649) (Weck and Wolf 2003)

The main appealing feature of STEP-NC is the removal of the post-processor from the part-programming route. Figure 4.5 shows the major differences between the conventional and the STEP-NC route of part programming. STEP-NC eliminates the transitional steps of post-processing the vendor-specific part program, which relies on the G & M codes to execute a machining operation. It aims to generate a machine-independent process plan that describes in stages when a particular machining feature should be machined according to the associated machining process parameters. Moreover, the STEP-NC route of part programming facilitates a bi-directional flow of information enabling engineering changes made at the shopfloor to be updated to the design department. This is possible due to the neutral data
format of representing the design and manufacturing intent, which simplifies the exchange of product information between dissimilar CAD, CAM and CNC systems.

4.5.2 **STEP-NC process plan**

The STEP-NC process plan is mainly made up of a highly structured *workplan* comprising of a sequence of *workingsteps*. It is presented in a physical file format laid out in the ISO 10303-21 standard, which divides it into 2 sections namely the ‘header’ and ‘data’ sections, as shown in figure 4.6. In the header section, the general information relating to the process plan is stated, such as the author, filename and company name. As for the data section, the content is led by the project entity containing the main *workplan* and *executables*, which initiate the actions on a machine tool. The main *workplan* describes a sequence of executable *workingsteps* linking the geometry description, such as the manufacturing features, with the technology description, such as the machining operations, cutting tools, feed rate and setup. Hence, STEP-NC provides the machine tool controller with rich information that can be used for just-in-time tool selection, tool path generation, intelligent error recovery, and other capabilities for intelligent control (Procter *et al.* 2002).
4.5.3 STEP-NC data model and data structure

This section examines the 2 versions of implementing STEP-NC developed by the ISO, namely the ISO 14649 (ARM version) and the ISO 10303 AP 238 (AIM version).

4.5.3.1 ISO 14649 (ARM) for standalone NC implementation

ISO 14649 extends the STEP product data models for CNC machining applications. It uses the EXPRESS language specified in ISO 10303-11 to define the various STEP-NC process data models needed to carry out a CNC machining operation. The ISO 14649 standard mainly concentrates on covering both the general machining data and the process specific data, as shown in figure 4.7. By strictly separating the geometrical, operational and process sequence data, the information access and storage are simplified and exchange between highly specified modules becomes possible (Xu and He 2004). The figure also depicts the various academics and industries who have contributed to the development of the ISO 14649 standard. The various parts of the ISO 14649 standard include:

- ISO 14649-1 (2003) provides an overview and fundamental principles
- ISO 14649-10 (2004) specifies the general process data
- ISO 14649-11 (2004) specifies the process data for milling
- ISO/PRF 14649-12 (2004) specifies the process data for turning
- ISO/DIS 14649-13 (2003) specifies the process data for WEDM
- ISO/CD 14649-14 (2002) specifies the process data EDM
ISO 14649: STEP compliant NC programming interface

Part 1: Introduction

Part 10: General Process Data

Milling, Drilling

Part 11:
- DaimlerChrysler
- Dassault Systems
- ISW, Stuttgart
- Komatsu
- NIST
- Open Mind
- Siemens
- STEP Tools Inc.
- Volvo
- WZL, Aachen

Turning

Part 12:
- ISW, Stuttgart
- POSTech, Pohang
- Siemens
- WZL, Aachen

Wire EDM

Part 13:
- AGIE CHARMILLES
- AMT
- CADCAMation
- EIG I-tech
- EPFL, Lausanne
 (Swiss Region)

Contour Cutting

Part 14:
- CMS
- EPFL, Lausanne
- ISW, Stuttgart
- OSAI
- WZL, Aachen

Figure 4.7 STEP-NC (ISO 14649) architecture (Weck and Wolf 2003)

ISO 14649 aims to model the complete information requirement that must exist in a controller to control a machine tool. In STEP terminology, it is referred to as the ARM that mainly provides the structure of the program execution by specifying a sequence of *workingsteps* with the associated machining process parameters. The general process data model for the machining schema is specified in the ISO 14649-10 standard, which makes references to the process-specific data models defined in different parts of the standard. These process-specific data models contain the relevant data types for a number of processes, such as the basic definition for a milling, turning or WEDM operation. The ISO 14649-10 also includes the definition of the workpiece and a collection of manufacturing features for different processes. However, it has been widely criticised (Feeney *et al.* 2003) for the objective way of presenting the process model without making substantial reference to the product data models. ISO 14649 does not include the geometric items and representations, which are referenced to the ISO 10303's generic resources, in the machining schema (Xu and He 2004). Consequently, the use of AP 238 is considered within the STEP community to pave the way for a full integration of the ISO 14649 standard with the ISO 10303 IRs.
ISO 10303 AP 238 (AIM) for STEP integrated CNC

ISO 10303 AP 238 (2004) is the result of further development carried out by the STEP community to harmonise the common field of product data types over the life cycle. It maps the information requirement modelled in the ARM (ISO 14649) onto the various STEP APs, as shown in figure 4.8. AP 238 acts as a data fusion annotating the product information with manufacturing features into the process data model standardised in ISO 14649 giving the machine controller greater intelligent and autonomy in manufacturing the part. Therefore, AP 238 enables a tight integration with the applications that use STEP constructs and is referred to as the AIM in STEP (Procter et al. 2002).

Figure 4.8 AP 238 – STEP integrated version of STEP-NC (Xu and He 2004)

In addition, AP 238 uses the mapped information requirement to obtain the implementation methods allowing the different applications to be supported within one AIM model. It facilitates the feature recognition system to read the CAD geometrical data defined in AP 203 and AP 214, as the manufacturing features specified in AP 238 are harmonised with AP 224. Similarly, the machine probing and inspection systems are able to read the tolerances in AP 238, which matches with those defined in AP 219 and AP 203. Therefore, the AP 238 can replace the ISO 6983 as the new input to CNC by extending a single structured feature-based representation of the product with all the relevant information that a programmer needs to machine a part.

The major difference between the two versions is the degree they use the STEP representation methods and technical architecture (Feeney et al. 2003). ARM defines a set of NC domain
requirements models, whereas AIM is the result of implementing the ARM with STEP concepts of using both the IRs and APs. Most of the European work uses the ARM version, which is easier to implement while the US work uses the AIM version, which encompasses a number of AP's (Rosso Jr et al. 2004).

4.5.4 **STEP-NC compliant CAD/CAM system**

The external process plan generator exploits the information requirements specified in the various standards to plan the machining process in the form of a STEP-NC compliant CAD/CAM system. It makes use of the STEP product data models defining 'what-to-make' and plans 'how-to-make' the part in compliance with the STEP-NC process data models. This can be carried out in two ways depending on the ARM or AIM implementation of STEP-NC. The ARM representation of the machining schema is defined according to the ISO 10303-21 physical file format, while the AIM representation is defined according to the ISO 10303-22, ISO 10303-27 or ISO 10303-28, see section 4.4.2.2. The end result is a STEP-NC information model-driven process plan providing the context of facilitating the product data to plan and control the machining operation.

4.5.5 **STEP-NC international research and development**

In recent years, a number of projects involving the planning of a machining process based on the STEP-NC data models have been developed and implemented. Table 4.1 shows the participants and the distribution of the technological scope within the IMS project, which has effectively entailed an international research and development into the ISO 14649 standard. The major contribution from the international research institutes and industries include:

1. **European STEP-NC research**

A major development from Europe is the STEP-NC compliant Siemens controller based on the company's Sinumeric 840D control working in the milling applications by incorporating it with the Siemens ShopMill shopfloor-oriented NC programming (SFP) system (Hardwick and Loffredo 2001). This enables the STEP-NC physical files to be integrated directly with the controller, with visualisation of the machining features and associated *workingsteps* in the STEP-NC compliant version of their ShopMill CAM system (Rosso Jr et al. 2004). Daimler Chrysler and Volvo have commercially demonstrated the capabilities to incorporate the ISO 14649 standard within the CAD/CAM products and export the STEP-NC output to the Siemens 840D control (Weck and Wolf 2003).
The work in Korea has been developed at the National Research Laboratory for STEP-NC Technology (NRL-SNT) in a close collaboration with Pohang University of Science and Technology. It involved the development of a conceptual framework for an autonomous STEP-compliant CNC taking the data defined in ISO 14649 as an input and carrying out...

Table 4.1 The IMS STEP-NC project partners (Xu and He 2004)

<table>
<thead>
<tr>
<th>Region</th>
<th>EU</th>
<th>Switzerland</th>
<th>Korea</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologies covered</td>
<td>Turning, Wood/glass cutting, Stone machining, Inspection</td>
<td>Wire/Sink EDM</td>
<td>Turning, Rapid Prototyping, XML-formatted STEP-NC data structure</td>
<td>AIM for Milling & Turning (STIX)</td>
</tr>
<tr>
<td>End user</td>
<td>Daimler Chrysler, Volvo, Franci (Italy), Progetti</td>
<td>Derendinger, Wyss</td>
<td>Samsung</td>
<td>IRB (including Boeing, Lockheed Martin, General Electric, GDLS, General Motors ...)</td>
</tr>
<tr>
<td>Machine tool manufacturer</td>
<td>CMS (Italy)</td>
<td>AGIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control manufacturer</td>
<td>Siemens *, OSAI (Italy), Fidia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAM manufacturer</td>
<td>Open Mind, Dassault</td>
<td>CADCAMation *</td>
<td>Cubictek</td>
<td>STEP Tools, Gibbs & Associate, BA Solutions, Numerical Control Services</td>
</tr>
<tr>
<td>Research institute</td>
<td>WZL (RWTH AACHEN), ISW (University of Stuttgart), KTH</td>
<td>EPFL, EIG I-tech</td>
<td>ERC-ACI *, KIST, NRL-SNT</td>
<td>Louisiana Center for Manufacturing Sciences, Lawrence Livermore National Laboratories</td>
</tr>
<tr>
<td>Association</td>
<td>CECIMO (Belgium)</td>
<td>AMT</td>
<td></td>
<td>NIST, Department of Energy, Army’s National Automotive Center (NAC)</td>
</tr>
</tbody>
</table>

ii. Korean STEP-NC research

The work in Korea has been developed at the National Research Laboratory for STEP-NC Technology (NRL-SNT) in a close collaboration with Pohang University of Science and Technology. It involved the development of a conceptual framework for an autonomous STEP-compliant CNC taking the data defined in ISO 14649 as an input and carrying out...
manufacturing tasks based on a 'process sequence graph' (Suh et al. 2002). The process sequence graph is a graphical representation of the sequence of working steps described in terms of the machining features and machining operations using AND-OR relationships. Suh et al. (2003) also presented a STEP-compliant CNC architecture for a SFP system consisting of STEP physical file interpretation, feature recognition, process planning, part program generation and verification.

iii. Swiss STEP-NC research
The Swiss research institutes, namely EPFL (Federal Institute of Technology in Lausanne) and EIG (School of Engineers de Genève at University of Geneva), together with AMT Consulting led the development of the ISO 14649 data model for wire-cut and die-sink EDM in collaboration with machine manufacturer; Agie-Charmilles, CAM manufacturer; CADCAmation and machine tool user; Wyss SA (Nguyen and Stroud 2003). They proposed a data model that was capable of storing information necessary for the input and output of the proprietary expert system for the WEDM process (Kiritsis 2001), as illustrated in figure 4.9. The expert system is commonly used in the WEDM CAD to CNC process chain and has complicated the standardisation of the data structure toward an integrated manufacturing environment.

In addition, these partners are also responsible for developing and finalising the concepts and algorithms for the implementation of advanced functions for intelligent WEDM CAM/SFP systems and for the feedback of modified NC programs and its version history (Nguyen and Stroud 2003). The advanced functions include computing the wire trajectory based on the
ruled surface and checking the collision between the wire and the adjacent surfaces when cutting features with sharp corners. Richard et al. (2004) have successfully demonstrated the 3D offset compensation on the ruled surface features for the WEDM process.

iv. US STEP-NC research

The STEP-NC project in the USA termed Super Model led by STEP Tools Inc. (2005) has made a significant contribution to the automation of the CAD to CNC manufacturing process through the use of STEP. Super Model aims to support a three-stage design process, namely functional design, manufacturing design and process design, and deliver the data produced by the process to an intelligent controller generating the cutting toolpath from the STEP-NC data (Hardwick and Loffredo 2001), as shown in figure 4.10. One of the most exemplary demonstrations mainly involved the use of the GibbsCAM programming system to facilitate:

a. Reading the demonstration part defined in AP 203 format through the use of the GibbsCAM STEP Translator. The part was then programmed by using GibbsCAM’s graphical interface, and visually verified by using its cut part rendering capability (Albert 2005).

b. Reading the demonstration part defined in AP 238 format and downloading it from the Internet through the use of the GibbsCAM STEP-NC adaptor plug-in. The STEP-NC adaptor then produced the GibbsCAM tooling, process and geometry elements and executed GibbsCAM functions to generate the toolpath corresponding to the AP 238 manufacturing features without any operator invention (Xu and He 2004). Subsequently, the part was machined on a retrofitted three-axis Bridgeport vertical milling machine, which was controlled by a STEP-NC controller comprising of an MDSI (Manufacturing Data System, Inc.) soft controller running on a PC-based NT platform (Lewis 2002). The MDSI soft controller is an open PC-based CNC software, which eliminates the need for intelligent board-level controller cards or other proprietary hardware.

c. Integration with an open modular architecture controller (OMAC) through the use of the AP 238 process plan, resulting in a two-way interface between the CAM and NC control systems (Waurzyniak 2001). As in the previous demonstration, the AP 238 data file provided all the manufacturing information enabling the automation of CAM processing and cutting toolpath generation to be carried out on GibbsCAM. The machining
demonstration was performed on a three-axis horizontal milling machine on a wax version of a typical part.

Figure 4.10 STEP Tool Inc. Super Model project (Hardwick and Loffredo 2001)

v. **STEP-NC research at Loughborough University (UK)**

The research work from Loughborough University has mainly concentrated on the planning of the machining process and the generation of the STEP-NC process plan for milling and milling/turning components. Allen *et al.* (2005) developed a STEP-NC compliant computational environment for a multi-agent framework, where agents represented the individual features of the component and work independently and cooperatively to generate STEP-NC process plans for discrete component manufacture. Rosso Jr. *et al.* (2004) discussed the need for a new ISO 14649 machining schema specifically for asymmetric rotational parts and outlined a feasible solution to use the ISO 14649 data model for turn/mill machining. Further work was undertaken by Ali *et al.* (2005), who designed and implemented a STEP compliant inspection framework providing a capability to establish standardised measuring and inspection across the total CAx chain.

4.6 Critique

This section critiques the evolution of the STEP-NC in terms of the pioneering product definition standards and the NC machining process planning development.

4.6.1 Product definition standards

The pioneering product definition standards such as IGES, PDDI and PDES, are still widely adopted by today’s CAD industry despite of their ambiguities in certain areas. IGES has been a dominant standard for CAD data exchange since its inception in the early 1980s. Its most exemplary characteristic is the ability to exchange data among different CAD systems that
translate IGES files into their proprietary format. However, IGES does not have a formal information model that captures the essential manufacturing information to fulfil the needs of CAM applications. On the other hand, PDDI was initiated in the mid 1980s to improve the underlying principles of IGES, which then led on to the development of PDES in the late 1980s. Although PDES captures the complete information about a product and provides the physical mechanism for data exchange, it gives no onus to the vendors implementing specific entities to suit their own application. These deficiencies in IGES and similar formats led to the twin requirements of a formal definition language and conformance requirements, both of which are leading-edge technologies (Bloor and Owen 1991).

STEP attempts to unite the various efforts of developing an agreed international standard and to surpass all its predecessors’ scope and infrastructure. Its information model covers not only geometry but also deals with topology, features, tolerances and materials. Its information structure is designed to be modular and extensible but is constrained by the relationships between the entities. In addition, STEP ensures that implementation is conformed to a particular application domain through the use of conformance testing. Unlike the other standardisation activities, STEP is forward looking, and a number of experimental product modelling systems have been developed based upon the STEP standard and commercial system interpreters (Dutta et al. 1998). Most CAD software vendors have been equipped in their new releases with a STEP data translator, such as AutoCAD (Autodesk 2005) and Solid Edge (UGS 2005).

4.6.2 NC machining process planning

Most of today’s CNC machines are still programmed in the G & M code language. The part program is generated by the CAM system, which makes use of the geometric information residing in the CAD system, to code the sequences of axis motions and tool functions. However, the data interoperability problem surfaces when building an environment for CAD/CAM system users on different sites, which requires a good communication tool and a proper standard to represent all the information to be transferred (Chao and Wang 2001). Such a problem prompted the need to develop a new data interface fusing the design and manufacturing intent together, and to look beyond the current range of information giving the CNC greater control and intelligence to machine a component. Against this backdrop, STEP Tools Inc. (2005) spearheaded the Super Model project in the US generating huge academia and industrial interests in solving the data interoperability problem in manufacturing. The
Super Model project is in effect a STEP model-driven intelligent control of manufacturing, which seeks to develop software and databases for an integrated design-to-manufacturing system allowing product design data to control CNC machine tools (Hardwick and Loffredo 2001).

STEP-NC aims to provide the complete information requirements that must exist in the machine tool controller. The information requirements include part geometry, manufacturing feature and manufacturing processes covering the need of the applications and tasks that a part programmer performs. Instead of programming the cutting toolpath and machine tool functions, STEP-NC describes the various machining workingsteps required to machine a specific STEP manufacturing feature. Therefore, STEP-NC has effectively replaced the part programmer by defining the manufacturing features to be machined and associating essential manufacturing information, such as the machining process parameters with the feature. STEP-NC is becoming increasingly popular over the legacy format of the G & M codes within the research community contributing to the future global manufacturing needs.

With the widespread use of the Internet, the networking of CAD/CAM systems across the globe will become increasingly apparent in the manufacturing industries. Through the use of STEP-NC and web-based technologies, resources can be easily accessed and work can be readily exchanged, thereby lowering the cost and leadtime of a project. Moreover, integrating procurement, design and manufacturing together within an e-manufacturing system promises to help give manufacturers the ability to eliminate product design changes far upstream, where such changes have the greatest negative impact on costs (Wauryniak 2001). General Dynamics Land Systems (GDLS) has successfully integrated GibbsCAM and OMAC demonstration machining of a part from a STEP-NC part program downloaded from the Internet using XML (Hardwick and Loffredo 2001), thus overcoming the interoperability problems posed by disparate CAx and CNC systems in manufacturing. Though significant research and development have successfully demonstrated the benefits and potentials of STEP-NC, it still requires continual expansion with different parts issued to a wider variety of product types and life-cycle stages before it can be accepted as a discrete manufacturing approach when dealing with far-flung suppliers/facilities across the globe.
Chapter 5

DESIGN OF AN INTEROPERABLE
STEP-NC COMPLIANT WEDM CAx SYSTEM FRAMEWORK

5.1 Introduction
This chapter proposes the research framework for a STEP-NC compliant WEDM CAx system based on the author's WEDM information models designed from the STEP-NC standards. The framework is described by mainly exploring the information and functional perspectives of the CAx to CNC process chain. These perceptions represent the author's view and are described in the first part of the chapter. The major part of the chapter discusses the use of the system framework within an interoperable manufacturing environment. The information models required to drive the system are discussed in depth in the following chapter 6.

5.2 Fundamentals of machining process planning
The fundamentals of planning a machining process by examining the representation of information and through the generation of a process plan is of critical importance. The information representation is described in terms of modelling the information whereas the process plan generation is described in terms of the approaches of manipulating the information supporting the machining process.

5.2.1 Representation of product and manufacturing information
The essential information supporting manufacturing decision-making can be represented as a product model (PModel) and a manufacturing model (MModel). The PModel captures the information related to a product throughout its life cycle, whereas the MModel captures the information about the manufacturing situation of a company in terms of its manufacturing facility and capabilities (Molina and Bell 1999). These information models, which have been well-established by several authors (Molina et al. 1995, Molina and Bell 1999), are equally important and need to be highly integrated. The information held within the MModel allows the product designer to study the effects of machining operations, machines, tools, fixtures/jigs, operation sequence, and machining parameters at an early stage of product development. Similarly, the information held in the PModel allows the manufacturing
process planner to manufacture the product according to the required geometry and tolerances.

The role of integrating the different computer environments supporting these product design and manufacturing process activities is played by a computer-aided process planning (CAPP) system. Previously, much of the information modelling research, particularly in manufacturing information modelling has been developed based on the viewpoint of the individual researcher and has not concentrated on information standards. This requirement has been recognised by the author and through the use of the STEP-NC standard such generic models have been developed as described in section 5.3.1.

5.2.2 Planning of machining process

Process planning has been defined by Alting and Zhang (1989) as a function within the manufacturing environment which deals with selecting the manufacturing processes and parameters to be used to transform a part from its initial form to final shape according to design specifications. To achieve this, it requires a part representation containing sufficient information for the properties to be evaluated, and a reasoning scheme in a form of rules and algorithms that carry out evaluation using the part representation (McMahon et al. 1997). The different approaches to machining process planning have been classified by Ham and Lu (1988) as variant, semi-generative and generative approaches. The variant approach involves retrieval and modification of a previous process plan to reflect the characteristics of the part, whereas the generative approach produces a completely new process plan for the part. The latter approach may utilise the decision table, decision trees or AI (artificial intelligence) techniques to develop a knowledge-based process planning system (Sormaz and Khoshnevis 1997). As for the semi-generative approach, it is a cross-breed incorporating both the quasi-variant and quasi-generative features.

Thus, the accuracy of process planning is dependent not only on the content of the information requirement but also on the manipulation of the information in order to produce a detailed description of the manufacturing operation sequences required to machine a part. A major contribution of this research is identifying a system framework that generates a STEP-NC process plan for WEDM component manufacturing based on the essential information requirement and the basic WEDM process logic and rules needed to plan the machining process.
5.3 STEP-NC compliant WEDM CAx system framework

This section proposes a system framework for a STEP-NC compliant WEDM CAx to CNC process chain by taking both information and functional perspectives of the system. The information perspective of the system framework is explained in terms of the information models and the data models needed to drive the WEDM CAx system. As for the functional perspective, it provides the methodology of planning the process and generating the process plan for WEDM component manufacturing.

5.3.1 Information perspective of system framework

The system framework has relied on the information models, namely the PModel and the MModel, to satisfy the information requirement of planning and generating a process plan for the WEDM process. The PModel defines all the product-related information encountered during its life cycle, such as the descriptions of billet, the design of product together with the manufacturing view of the product. The manufacturing view provides a link between the PModel and MModel, and only has specific instances of the manufacturing processes (Liu and Young 2004). Whereas in the MModel, it identifies and represents the information relating to the manufacturing resource, manufacturing process and manufacturing strategy. The latter represents how the resource and process are organized, composed and deployed to support the realization of the manufacturing function (Molina and Bell 1999). Thus, the PModel and MModel capture the complete information and knowledge required to carry out the WEDM process.

The data models for WEDM component manufacturing have been based on the ISO 14649 standard, which is made up of different explicit parts providing the general and specific process data. Part 10 is the backbone of the standard covering the common data structures for most machining processes, see section 4.5.3.1. These data structures describe the part to machine and the task to perform. In the standard, the part is defined as a workpiece while the task is defined as a workplan consisting of a series of machining_workingsteps to carry out the machining_operation on a manufacturing_feature. On the other hand, the subsequent parts of the standard contain the data structures for a particular machining process, such as the ISO/DIS 14649 part 13, which is dedicated to the WEDM process, see section 4.5.3.1.

The ISO/DIS 14649-13 data structures are extended from those defined in part 10 and provide the descriptions of the wire_edm_machining_operation used in the WEDM process.
5.1 shows the author's overall STEP-NC compliant data structure whose root is defined as a project. The project thus describes the workpiece to be manufactured in terms of material, global tolerances, geometry and boundary geometry select, and the workplan to be performed in terms of the setup and machining workingstep.

![Diagram of WEDM data model based on ISO 14649 standard](image)

Figure 5.1 WEDM data model based on ISO 14649 standard

5.3.2 Functional perspective of system framework

The system framework exploits the information and knowledge existing in the PModel and MModel to support STEP-NC compliant planning of the WEDM process. It has been designed to be a semi-generative process planning system, which enables the interoperable manufacturing of a product at a different location/company by a different WEDM machine with dissimilar manufacturing process capability. Figure 5.2 shows the system framework depicting the STEP-NC compliant information models and the operational structure of the process plan generator. The term interoperability is used in this research to refer to the ability of the STEP-NC process plan generated from the system framework to operate among the different software systems in the CAx to CNC process chain, thereby promoting the ease of exchanging the information and knowledge about the WEDM process.

The operational structure of the generator has been aligned with the use of PModel and MModel spelling out the design and manufacturing intent of the part. It is made up of three major stages namely the translation of the geometrical features, the planning of the machining operation and the generation of the process plan. The machining operation planning stage is
sub-divided into 3 stages, which define the WEDM constraints, identify the WEDM capability and determine the WEDM schema.

Figure 5.2 System framework for STEP-NC compliant WEDM CAx system (Ho et al. 2005)

However, if integration and automation are to be achieved in the CAPP system, a logical approach to the identification of a planning structure is needed (Ham and Lu 1988). This has been realised by identifying the essential planning activities and their relationships through the use of the IDEF0 activity modelling methodology. IDEF0 stands for ICAM Definition level 0 (Colquhoun et al. 1993) and provides a valuable representation of activity relationships and information flows illustrated as an abstract at the top level to the detail at the bottom level. Figure 5.3 shows the IDEF0 representation of the proposed system at the highest level. Each activity is controlled by a specific part of the STEP and STEP-NC standard together with libraries of manufacturing resources related information, which are briefly described below:

- AP 203/214 specifies the geometry of product,
- AP 219 is used for inspection data and results,
- AP 224 specifies the definition of feature-based component model,
- AP 240 is used in process planning,
• ISO 10303-21 describes the format of the physical file,
• ISO 10303-22 is the SDAI for computing languages such as C++ and Java,
• ISO 14649-10 specifies the general process data,
• ISO/DIS 14649-13 specifies the process data related to WEDM process,
• Fixture library provides information on the jig/fixtures, and
• Machine tool library provides information on the machine tool such as the machine tool specification.

Figure 5.3 IDEF0 representation of the STEP-NC compliant WEDM CAx system framework

5.4 Major activities of system framework
The major activities of the proposed system framework for a STEP-NC compliant WEDM CAx system include the translation of the geometrical features, the planning of machining operation and the generation of the STEP-NC process plan. These WEDM process planning activities are outlined below.

5.4.1 Feature translation
During the first stage, feature technology has been employed to translate the instance of the PModel for use in applications following design such as machining process planning. It involves the translation of low-level information into a feature-based component model, which has also been used to integrate and automate design and manufacturing applications.
Generally, there are two approaches of translation, namely feature-based design, which uses predefined and application specific features to model a product, and feature recognition, which converts the CAD product model into the feature-based component model without limitations on designer activities (Ozturk and Ozturk 2001). In the proposed system, the author favours the latter approach because it will not restrict the modelling of a product to a limited number of predefined features. It uses a feature recogniser based on AP 224 to extract manufacturing features and relationships, and identifies the required machining operations to machine the part but this is not the core aim of this research. The system also required a translator based on AP 203/214 to interpret the geometry of part. However, Allen et al. (2003) believed that the AP224 translator could be further developed to capture the feature information from a feature-based CAD model.

5.4.2 WEDM machining operation planning

The second stage of planning the process has been divided into 3 sub-stages consisting of defining the machining constraints, identifying the machining capability and determining the machining schema. These activities have been designed to capture, organise and use the product and process knowledge via the proposed system to plan a detailed machining operation for the WEDM process. In this research, process planning refers to the making of a plan, which describes the required procedures of conducting a WEDM process, such as the setting up of the workpiece and the identification of the WEDM machining operation for a specific feature-based component. On the other hand, operation planning refers to the making of a plan, which indicates the detailed sequences of the WEDM machining operation, including the machining strategy to employ, the wire tool to use, the cutting conditions to apply, etc. Figure 5.4 shows the machining operation planning activities for the proposed system, which has been largely based on the WEDM MModel and are described as follows:

WEDM resources – define the physical constraints imposed on the WEDM process, e.g. `wire_tool`, `wire_edm_machine_functions`.

WEDM processes – identify the functional capabilities of WEDM process, e.g. `workpiece_setup`, `wire_edm_machining_operations`.

WEDM strategies – determine the machining schemas of the WEDM process, e.g. `wire edm approach/retract_strategy`, `wire edm technology`.
5.4.3 WEDM process plan generation

Lastly, the expected output from the system is a STEP-NC compliant and information model driven process plan defining 'what-to-make' according to the PModel and 'how-to-make' it by conforming to the MModel. The process plan is made up of one top-level entity called project, which indicates a machining workplan and a workpiece upon which manufacturing functions are to be performed. The latter entity contains the characteristics of the workpiece to be machined, such as material, shape and size. As for the workplan, it contains a description of setting up the workpiece at the machine tool and a set of sequential machining_workingsteps. Here, each machining_workingstep defines a wire_edm_machining_operation, which is based on the machine, tooling and technological capabilities of the WEDM process. The process plan also captures the essential machine dependent information needed to operate the proprietary expert system, which is commonly found in the WEDM process, such as the wire_edm_machining_strategy, wire_tool, wire_edm_technology, etc. The end result is a STEP-NC compliant process plan that is not dependent on the machine tool, thereby providing the capability to operate a WEDM process in an interoperable manufacturing environment.
5.5 Interoperable manufacturing environment

An interoperable manufacturing environment has provided the vital means of communicating with or exchanging data between different CAD, CAM and CNC systems. It provides the integrated infrastructures which via computational mechanisms support interaction between business and manufacturing components where potentially such components may be distributed around the factory, globe or even universe (Weston 1998). The five basic approaches identified by Potter (2000) to interoperate one system's CAD data in other applications include the use of a standard neutral file format, direct translators, geometry kernels, CAD program's application programming interface (API) and visualisation technology based on tessellation. In addition, the Microsoft’s Object Linking and Embedding (OLE) technology is another method of facilitating interoperability, which enables a product designer to essentially ‘cut and paste’ a solid-modelling component from one CAD application into another (Rowell 1997). Other options that support the concept of interoperability include programming languages such as Java and Corba. More importantly, the system's interoperability also depends on the industry-wide collaboration between CAD, CAM and CNC vendors sharing data throughout the design through manufacturing cycle.

The proposed system framework supports data interoperability between the various CAx systems or CNCs in the manufacturing chain. Figure 5.5 illustrates how the proposed system operates in an interoperable manufacturing environment. The output from the system is a process plan that is interoperable with the corresponding CAx systems or CNCs. This has been largely made possible by the information models identifying machine independent information that can be executed on the various types of WEDM machine. However, the author believes that a certain level of detail is still needed to be fed into the system due to the proprietary characteristics of the CNCs for the WEDM process. For example, a component that requires four cutting operations at one machine may only need three cutting operations if it was manufactured at another machine to obtain the same surface finish. Such a difference in the machining strategies is determined by the individual CNC vendor's proprietary expert system, which makes it difficult to represent the information and knowledge needed to drive it. As mentioned in section 4.5.5, the expert system is commonly used in the WEDM CAx to CNC process chain to interpolate the cutting contour, monitor and control the machining condition. Hence, it is important that the WEDM process plan contains enough data to allow the CNC to intelligently process or interoperate from machine to machine. This can be
achieved through the information modelling of the manufacturing capabilities of the WEDM process.

![Diagram of Interoperable Manufacturing Environment for WEDM Process](image)

Figure 5.5 Interoperable manufacturing environment for WEDM process

The key factor of attaining data interoperability is to adopt a good infrastructure, a proper communication tool, and a standard product data representation that can be accepted by most CAD/CAM software systems (Chao and Wang 2001). The author expects that the user-driven STEP-NC data interface will enable the proposed system framework to meet the interoperability requirement through the use of the neutral file format of representing the information for WEDM CNC manufacturing. This is in contrast to the machine-driven ISO 6983 data interface, which allows the incorporation of vendor-specific format or code to fully describe the WEDM process. Hence, by complying with the STEP-NC approach of CNC manufacturing, different WEDM CAD/CAM software companies and CNC vendors will be able to exchange product and manufacturing information explicitly without making compromises on disclosing their proprietary manufacturing methods and procedures.
6.1 Introduction
This chapter provides an overview on how the author's STEP-NC compliant information models can be used to support the WEDM CAD to CNC process chain. It introduces the research from a viewpoint, which focuses on the planning of the WEDM process through the use of information models. The viewpoint is used to define the information models, which are based on parts 10 and 13 of ISO 14649 standard. This chapter includes an overview of the author's WEDM product and manufacturing data models. It also describes the additional information to the standard that is needed to operate and control the WEDM process.

6.2 Context for STEP-NC compliant information modelling
This section describes the context for modelling the product and manufacturing information needed to facilitate the planning of the WEDM process within the STEP-NC environment. It also describes how the STEP and STEP-NC standards have an effect on the design of the author's WEDM information models.

6.2.1 Integrated product and manufacturing information modelling
Information modelling has been used to represent the manufacturing capabilities of the WEDM process. It assists in identifying the common information requirements before developing the machining process planning software applications. Hence, it should be recognised that the resultant information models are application and processing independent and form the basis for the design of application independent databases and interfaces (Toh et al. 1998). The common information requirements needed to execute and control the WEDM process have been divided into the PModel defining the design specification together with method of manufacture, and MModel relating to the process capabilities, as mentioned in section 5.2.1. However, the two information models are closely integrated, as the product information is required to support the determination of the process, whereas the manufacturing information is required to facilitate the optimisation of the design specifications and method of manufacture.
This has been made possible by the information modelling techniques, which simplify the representation of the integrated data structure and relationships for a variety of product design and manufacturing process applications. The information modelling tools used in this research included the EXPRESS language and the UML (Quantrani 2000), which are described in detail in chapter 7.

6.2.2 **STEP compliant product information modelling**

The STEP standard has strongly influenced the research in the area of specifying the information of a WEDM product for CNC manufacturing. It seeks to provide a complete and unambiguous representation of the WEDM product geometrical information by using a feature-based component representation based on the object-oriented EXPRESS language. A feature-based element is considered as a geometric primitive, characterizing it as a component building block embodying the meaningful information for the exchange and interpretation of the design intent to other applications. In addition, STEP makes a clear distinction between the information model and the implementation method allowing the product data model (PDM) to be organised with a unique set of entities for the WEDM process. As a result, richer product information can be expected and exchanged consistently between the different stages of the WEDM product life cycle from product designing to product manufacturing.

In this thesis, the PModel holds the detailed information relating to the product, which is clearly distinguishable from the PDM, which provides a data structure and relationship that enables the essential characteristics of a product to be captured (Borda et al. 2001). The research work carried out by Ming et al. (1998) has provided a significant insight into the appropriate breakdown of the WEDM PModel. They developed an object-oriented STEP based PModel depicting the geometrical information and the semantic representation of the part embodying the nominal shape, form feature, dimension and tolerance, material, and surface information for a CAPP system. These elements have been used to represent the basic attributes of the author's PModel.

6.2.3 **STEP-NC compliant manufacturing information modelling**

In addition to STEP compliant product modelling, the STEP-NC standard has effected the common consensus of establishing the structure of the manufacturing information supporting the WEDM process. It has been developed to standardise the information content and data structure describing the various machining process planning activities for CNC
manufacturing. The data structure of STEP-NC, which describes the characteristics of the CNC machining process has been extended from the STEP PDM in order to improve the integration of the CAD to CNC process chain. It also helped in the studying of the impact of the functional design decisions on the manufacturing technologies and processes by setting the design criteria in the context of the manufacturing facilities.

Several researchers (Borja et al. 2001, Gao and Huang 1996, Giachetti 1999, Ming et al. 1998) have modelled the manufacturing process capabilities in the context of the process representing the functions and characteristics of the manufacturing activities, and the resource representing the constraints of the manufacturing facilities. Some researchers (Liu and Young 2004, Molina et al. 1995, Molina and Bell 1999) have identified an object-oriented MModel for capturing the data, information and knowledge related to the manufacturing resources, processes and strategies within an enterprise. These research areas have been utilised for the modelling of the manufacturing information about the machine, cutting tool, machining process and operation have contributed to the development of the author's MModel supporting the generation of the WEDM machining schema in an integrated design and process planning environment.

6.3 STEP-NC compliant information modelling for WEDM process

This section outlines the author's information models supporting WEDM component manufacturing based on STEP and STEP-NC standards.

6.3.1 WEDM information modelling

The information models described in this research apply the relevant STEP-NC standards to support decision-making relating to the WEDM process planning. As mentioned in section 4.5.3, STEP-NC has a common source of well-defined and structured information capable of satisfying the information requirements needed to carry out a number of CNC machining processes. Part 13 of the ISO 14649 standard has been dedicated to the WEDM process and is still in the development phase. The Swiss partners of the IMS project (Richard et al. 2004) are the developers of the standard. Although the standard is still under development, the overall structure and content is expected to remain mainly unchanged.

The author's proposed WEDM information models are shown in figure 6.1 and consist of the PModel and MModel based on the STEP-NC standards. The manufacturing view attribute
residing in the PModel embodies the relevant instances of the MModel. It captures the generic manufacturing information in the PModel to promote interoperable manufacturing of a WEDM part. This is consistent with other researchers (Borja et al. 2001, Lim et al. 1997) who have argued that the information held in the MModel must be made available to the product designers during product development phase in order to facilitate design for manufacture.

Figure 6.1 STEP-NC compliant WEDM information models

6.3.2 WEDM manufacturing model (MModel)
The WEDM MModel captures the common information describing the manufacturing capabilities of the WEDM process. It has been adapted from Molina et al. (1995), whose MModel described the manufacturing capability of a particular facility in terms of its manufacturing resources, processes and strategies. As such, the WEDM MModel also considers the physical (resource) and functional (process) properties of the machining process. It also takes into account the representation of the feasible WEDM machining schemas (strategies) based on the composition of the resources and processes. This is due to the different combination of WEDM resources and processes having a direct effect on the WEDM machining schemas of achieving the machining targets, such as the number of cuts required to obtain a desired surface finish. The data structure of the WEDM MModel that defines the characteristics of the process is illustrated in figure 6.2. The knowledge about the WEDM process is organised in an object-oriented manner enabling the process planner to select the appropriate strategies based on the array of available resources and the feasible
processes to machine a part. The WEDM MModel has been made up of the following attributes:

WEDM resources – model the physical constraints imposed on the WEDM process to machine the required part, e.g. `wire_tool` and `wire edm machine functions`.

WEDM processes – model the functional capabilities of the WEDM process to perform the machining operations, e.g. `workpiece_setup` and `wire edm machining operations`.

WEDM strategies – model the machining schemas of the WEDM process based on the given WEDM resources and processes, e.g. `wire edm approach/retract strategy` and `wire edm technology`.

These three attributes of the WEDM MModel have covered all the essential manufacturing information needed to carry out the WEDM process.

![Figure 6.2 Representation of STEP-NC compliant WEDM manufacturing data model](image-url)
6.3.3 **WEDM product model (PModel)**

The WEDM PModel facilitates the management of the product information and knowledge for the various product life cycle activities. It models all the essential properties and characteristics of a WEDM part. These include the representation of the billet, in terms of the material, nominal shape and size, together with the product design in relation to the geometries, dimensions and tolerances (G, D & T) of the part to be machined. In addition, a manufacturing view of the part is offered to the PModel in order to serve as a means of integrating the PModel and the MModel. Since the PModel has been ultimately used to satisfy the information requirements of the manufacturing process at the later stage of the process chain, it is vital to set it in the context of the selected process to manufacture the part. By doing so, the manufacturing view supports the preliminary and interoperable process planning in the early product development stage in an integrated manufacturing environment. This approach is consistent with the work done by Liu and Young (2004), who have also provided a manufacturing view in their PModel to support global manufacturing coordination decision-making.

![Figure 6.3 Representation of STEP-NC compliant WEDM product data model](image)
Figure 6.3 shows the data model of the WEDM PModel offering a manufacturing view of a part. The MMModel residing in the PModel shares the same data structure as the main MMModel, which holds the actual manufacturing information in the application domain and works in harmony with the PModel. The WEDM PModel is made up of the following attributes:

WEDM billet – models the characteristics of raw material, which have an effect on the selection of cutting parameters (technology), e.g. material and nominal shape and size.

WEDM product design – models the G, D & T of the WEDM part, which have a direct influence on the determination of the machining operations and the selection of the cutting parameters, e.g. the surface finishing quality and the dimensional accuracy.

WEDM manufacturing view – models the relevant instances of the MMModel, which allow an early assessment of the manufacturability of the part and the interoperability of the machining workplan, e.g. interoperable workplan, production history and manufacturing features.

The WEDM PModel enables the WEDM product information to be captured and represented through these three attributes. Figure 6.4 shows the overview of the two STEP-NC compliant WEDM data models.
The STEP-NC standard has provided the WEDM information models with a bounded set of data structures for CNC manufacturing. As shown in figure 6.4, the PDM is headed by the Project class, which is the top-level entity of the STEP-NC process plan, whereas the MDM is led by the Executable class, which is the base entity of all executable objects initiating actions on the machine (ISO14649-10 2004).

6.4 WEDM extended information models

In the author’s opinion, the current data model specified in the ISO/DIS 14649-13 needs to be extended in order to fully support the WEDM machining operations. This is due to the lack of common product and manufacturing information that allows the CNC machine to intelligently operate the WEDM process. Figure 6.5 shows the additional information represented in their respective information models and is illustrated by the dotted lines and textboxes. This information has been identified by the author’s use of the commercial WEDM CAD/CAM systems, namely the PEPS Solid Cut Wire EDM (Production Engineering Productivity System) (Camtek 2005) and PC FAPT Cut i (Fanuc Automatically Programmed Tools) (600Centre 2005).

![Figure 6.5 WEDM extended information models](image)

As identified above, the extended information models are based on the machining/programming parameters of PEPS Solid Cut Wire EDM (PEPS Solid Cut) and the
PC FAPTI Cut i (FAPT) CAD/CAM systems. The inclusion of this additional information makes it possible to facilitate the integration of the PModel and the MModel with these commercial CAD/CAM systems. The detail of these systems will be discussed in depth in chapter 8, which describes the testing of the prototype system.

In addition, a classification of the various industrial parts manufactured by the WEDM process has been identified by the author and has been mapped onto the STEP-NC standard in order to determine the additional information that has yet to be specified in ISO/DIS 14649-13. Figure 6.6 shows the author’s classification of the WEDM parts under the various
headings including the types of manufacturing feature, boundary, profile cutting, 4-axis machining, edge and corner offsetting. The classification is also based on the approach, in which PEPS Solid Cut and FAPT program the machining operations for these parts. Such an approach simplifies the programming of the machining operations that are specific to the classified parts. For example, parts requiring multiple profile cutting have to perform the tag cutting and manual slug removal operations. Whereas parts requiring no-core cutting do not have to perform these operations, as such machining does not produce any core/slug. Therefore, through the classification of the WEDM parts, the specific programming of together with the relevant information relating to the machining operation for a specific part can be easily identified.

Each WEDM part has been closely matched with the feature-based entity defined in the respective ISO 14649 standards. Any part that is left without a STEP-NC entity indicates the missing information in the current standards with respect to that part feature. The additional information identified is as follows:

Radius corner with conic offsetting – is a type of radius corner generally found on WEDM parts, as shown in figure 6.6. It needs to be specified in the `edm_transition` as shown in table 6.1. The additional information is highlighted in bold.

```
TYPE EDM_TRANSITION =
ENUMERATION OF
(constant_radius, conical, sharp,
radius_corner_conic_offsetting);
END_TYPE;
```

Table 6.1 Extended entity edm_transition

Automatic wire threading – is an automatic machining characteristic that helps to reduce the amount of operator’s invention in threading the wire through the wire guides with/without the workpiece in place. This attribute needs to be added in the entity `wire_edm_machining_functions` as shown in table 6.2.

Machining envelope – refers to the size of the machining area, which is determined by the WEDM machine axes including the x, y, z, u and v axes. It needs to be specified as one of the attributes in the `wire_edm_machining_functions` as shown in table 6.2.
Table 6.2 Extended entity wire_edm_machine_functions

Machine feedrate controlling – is used together with an expert system to monitor and control the feedrate when machining parts with small corner, small radius, variable taper or variable thickness. It needs to be included in the wire_edm_technology, as shown in table 6.3.

Cutting parameters setting – refers to the setting of various machining parameters in order to achieve optimal cutting conditions and offsets, such as the pulse on/off time and working current, as shown in table 6.3. The parameter setting is primarily determined by the WEDM expert system, which differs from vendor to vendor.

Table 6.3 Extended entity wire_edm_technology

Offset profile – is a literally twisted WEDM part in which the top profile axially offsets from the bottom profile, as shown in figure 6.6. The basic attributes for the offset profile are shown in figure 6.7.
No-core cutting – refers to the machining of a pocket through gradual enlargement without producing any core/slug, as shown in figure 6.6. It needs to be added as one of the machining features, as shown in figure 6.7.

Gear, cam and cam gear profiles – are some of the most commonly machined parts carried out by the WEDM process, as depicted in figure 6.6. This is largely due to the intricate teeth, which are very difficult to be machined by traditional material removal processes. The cutting of the gear profile needs to be added to the machining feature, as shown in figure 6.7. It has been prefixed with an ‘EXT’ (extended) in order to distinguish from the STEP-NC entities.

![Diagram of machining feature, general path, EXT_gear, EXT_offset_profile, EXT_no_core](image)

Figure 6.7 Gear, offset_profile and no_core machining features

Die/Punch cutting – has a different effect on the compensation of the offsets caused by the sparking zone when machining a punch or a die. Depending on the cutting direction, the side (left/right) in which the compensation is to be made needs to be defined in the wire edm_machining_operation, as shown in table 6.4.

Tag identification – is a machining characteristic, which identifies the tag position and the need to have multiple tags when machining a large component. It needs to be included in the wire edm_machining_operation, as shown in table 6.4.

Reverse cutting – reduces machining time by performing machining with a different set of cutting conditions and offsets on the returning toolpath. This needs to be added into the wire edm_machining_operation, as shown in table 6.4.
Multiple cutting – performs an order of cutting on multiple punches/dies on the same workpiece in a single setup, as shown in figure 6.6. The strategies optimising the amount of machine operator’s invention on the manual removal of the slug/waste material and the manual control of the machine thereafter need to be defined as shown in table 6.5.

The additional information that is crucial to the WEDM operation has been identified to allow the CNC to intelligently operate the process. It adds on to the existing information specified in the drafted ISO 14649-13, which is still currently under development. This information has been represented in an object-oriented manner. The definition of the common technological parameters for specifying the WEDM generator setting is represented in the wire edm technology whereas the standardisation of the proprietary strategies for machining specific features, such as sharp corner is presented in the wire edm machining strategies. This complies with the STEP-NC approach of reducing all the essential WEDM process data to its common denominator facilitating the reuse and reconfiguration of the data according to the different functions of the CAD to CNC software applications. This additional information is considered as a valuable contribution from this research work to the development of the ISO/DIS 14649-13 standard.
Chapter 7

COMPUTATIONAL ENVIRONMENT FOR
STEP-NC COMPLIANT WEDM CAx PROTOTYPE SYSTEM

7.1 Introduction
This chapter describes the computational environment for the STEP-NC compliant WEDM CAx prototype system based on the framework and the information models identified in chapters 5 and 6 respectively. The prototype system is referred to as Wire SNIPs (STEP-NC interoperable process planning prototype system for the wire-cutting EDM process) throughout the thesis. Wire SNIPs has been constructed through the use of the Java programming language and the ObjectStore database management system (DBMS) to capture and manage the essential information and knowledge supporting the various WEDM process planning activities. The chapter describes the development, functional and operational structure of Wire SNIPs to generate a STEP-NC process plan for WEDM component manufacturing.

7.2 Overview of Wire SNIPs
This section provides an overview of Wire SNIPs by briefly describing the various tools used to develop the prototype system. It also describes the representation of the WEDM information models needed to drive Wire SNIPs through the use of UML.

7.2.1 Basic components of Wire SNIPs
Wire SNIPs has been developed to demonstrate the viability of the product and process knowledge residing in the author’s WEDM information models based on STEP-NC standards. The design has been based on the framework outlined in chapter 5 and the WEDM PModel and MModel outlined in chapter 6. Figure 7.1 depicts the methodology of designing the Wire SNIPs based on the system framework and the WEDM information models. The system framework provides the operational structure, which supports the decision-making and the generation of STEP-NC process plan relating to WEDM process planning, see figure 5.2. These process planning activities, their relationships and information flows have been illustrated by the IDEF0 diagram as an abstract in figure 5.3 to the detail in figure 5.4. Such an approach of differentiating the various process planning activities facilitates the
development of the Wire SNIPS, in terms of database management. As for the instances of WEDM PModel and MModel, they have been represented by the UML class diagram, see figure 6.4, and will be further discussed in the following section 7.2.2.

The realisation of the system together with the supporting information models has been systemically designed through the use of the UML class diagrams, the ObjectStore DBMS (Progress 2005) together with the Java programming language (Sun 2005). UML is an industry-standard and object-oriented modelling language that provides a reliable architecture for the specification, visualisation and documentation of information models. It has enabled the design along with the structure of the product and process knowledge to be explicitly illustrated and easily implemented in the DBMS. The ObjectStore DBMS is employed in the system to store, modify and extract data from the database, thus allowing it to be shared among multiple applications. As for Java, it is the nerve of the system performing the main planning task of matching the applicable manufacturing process capabilities to product design specification. The underlying principle of planning a WEDM process is made by invoking the rules of sequencing a logical machining route and imposing the technological machining criteria, such as the required surface finish and minimum number of cuts.

The main objective of Wire SNIPs is to prove that the author's WEDM PModel and MModel based on the STEP-NC standards can be used to generate a STEP-NC process plan for WEDM component manufacturing. This has been achieved through an interactive software system, which makes the various process planning decisions and maps out a feasible process plan. Wire SNIPs was capable of determining the detailed WEDM operations based on the essential product and process information captured from the system users. Such capability has been made possible by making the following assumptions:

i. Machining method was limited to die-opening cutting
ii. Machining processes were limited to 3-axis WEDM machining
iii. Machining processes were completed in single setup
iv. Cutting modes were standardised to roughing, finishing and surface finishing
v. Cutting conditions were generated automatically
vi. Product information was extracted from feature-based component data
vii. Feature-based component data was transformed from a CAD database
viii. Translation of feature-based component has been carried out
ix. Manufacturing resource allocation was not affected by resource availability
Figure 7.1 The design of Wire SNIPs based on the system framework and the WEDM information models.
7.2.2 Representing WEDM information models in UML

The object-oriented approach has provided the fundamental building blocks of the WEDM information models for the development of the Wire SNIPs. It views the process planning system as a set of interrelated objects, which exchange messages during process planning (Sormaz and Khoshnevis 1997). More importantly, the ability to create a number of objects, and make complex associations between them, enables users to more realistically represent the capabilities of resources, the relationships between resources and to map from process requirements to suitable resources (Molina et al. 1995).

However, the key advantage of the object-oriented approach is that data inheritance and encapsulation characteristics enable complex WEDM objects to be defined by combining several simpler objects, such as wire edm machining operation as shown in figure 7.2. Data inheritance occurs when the objects in the lower level of the hierarchy inherit common attributes from higher-level objects, whereas data encapsulation only allows the manipulation of the object’s data through the appropriate operations; external manipulation of the data is not allowed. Thus, the Wire SNIPs was expected to deliver such benefits, making the process planning software applications more flexible, more reliable and faster to develop.

UML was considered the most appropriate analysis and design method for developing the data structure for Wire SNIPs. It conceptualised the seamless integration of the different WEDM part design and machining process planning activities by building on the concept of objects and classes. Objects are defined as an abstraction of some thing in the real world, that carries both the data describing the real-world objects and the operations that have the only allowable access to that data (Brown 2002). Whereas, a class is defined as a group of objects with similar properties (attributes), common behaviour (operations), common associations to other objects (relationships), and common semantics (meaning) (Rumbaugh et al. 1991).

Figure 7.2 shows a class diagram illustrating how the object identifies itself through a set of attributes, behaves through the appropriate operations, and associates itself to other objects through the specified relationships. The three major steps used to generate the class diagram of the WEDM information models include finding the classes involved in the problem domain, specifying the details of their attributes and operations, and identifying the relationship among the classes as well as their roles and cardinalities (Zhao et al. 1999).
These steps have facilitated the WEDM information models to be constructed as objects coordinating in a manner satisfying a specific design or process planning application.

![Diagram of Machining_Operation class]

Figure 7.2 Wire_EDM_Machining_Operation inheriting the Machining_Operation attributes

UML has been used to represent the various objects in the WEDM manufacturing environment and the relationships between these objects. Each of the entities or data types specified in the WEDM PModel and MModel based on part 10 and part 13 of the ISO 14649 standard were mapped to the UML format and transformed into classes with logical links. Figure 7.3 shows the class diagram depicting the various classes of the interrelated WEDM product and process data types by using the ObjectStore Database Designer software (Progress 2005). As seen from the figure, the many links or associations between the low-level data types could be interpreted as the avoidance of data redundancy and the interdependence of the product and process knowledge supporting the WEDM process.

In addition, the UML representation of the WEDM information models serves as a logical data model, which can be used as the building blocks in the creation of an object-oriented DBMS (OODBMS). In the case of Wire SNIPs, it has helped to develop the logical database schema of the WEDM information models, which were directly implemented in the ObjectStore DBMS.
Figure 7.3 The overall WEDM data model represented in UML
7.2.3 Developing Wire SNIPs database system

The OODBMS has allowed the easy storage and retrieval of WEDM information and knowledge captured from the system users in a structured manner. It retains all the key advantages of the object-oriented technology providing an efficient platform for information storage and retrieval based on data encapsulation and modularity. Gu et al. (1994) claimed that the administrative advantages were brought about by encouraging data modularity and by associating particular related knowledge with a specific set of data. As such, it gave OODBMS the performance advantage over its counterpart, the Relational DBMS, which required the mapping of objects to tables. As a result, the Relational DBMS slowed down the processing performance and increased the amount of code to be written due to the mapping of objects into rows and columns (ObjectStore 2003). Figure 7.4 illustrates how the OODBMS expedites the query of the Wire SNIPs database by traversing the ‘tree-like’ data structure or navigating from one node in the figure to another. As shown in the figure, the caching was the retention of data, usually in the application, to minimize network traffic flow and/or disk access. In addition, the OODBMS offered an ideal data storage solution for object-oriented programming languages such as Java and C++, which will be further discussed in depth in the subsequent section of this chapter.

![Figure 7.4 The query of the object-oriented Wire SNIPs database](image)

The object-oriented ObjectStore DBMS has been applied to Wire SNIPs to perform the functions of data storage and retrieval. Its main merits included:

- Extensive improvement on object serialisation by providing the capability to read and write a smaller subset of the complete tree of objects at a time.
• Real-time responsive update/access to the locally cached data, especially if an application required updating/accessing the objects frequently.
• Coordinated multiple threads sharing a single database and protecting the integrity of data.
• Comprehensive library of Object Managers supporting multimedia applications by maintaining the data independent of the data types such as image, audio, full text, video or HTML.
• Native support for Java and C++ object models by managing the ObjectStore objects in a component-ready form.

The ObjectStore DBMS has been successfully adopted within the telecommunication market, however the growth of ebusiness has broadened its appeal to include ebusiness companies, financial institutions, and the embedded software market.

7.2.4 Developing Wire SNIPs application

The Java programming language has been employed to develop the Wire SNIPs applications. Its most appealing feature is the availability of the Java virtual machine (JVM) on almost all types of hardware and software, enabling Java applications to execute completely independent of the operating systems. JVM is a platform-independent runtime environment that converts java bytecodes into machine language and executes it. Therefore, such a ‘write once, run anywhere’ capability was expected to facilitate the Java applications written for Wire SNIPs to port easily between different platforms. Moreover, Java has a standardised support maintained and controlled by a single company, Sun Microsystems (2005), which supplies a consistent range of Java compilers and development environments. On the other hand, object-oriented programming languages, such as C++, are managed by different developers producing their own versions. Such a lack of a standardised support especially in the area of implementing the client-server environments has prompted the use of Java for the development of Wire SNIPs.

The Java software development kit (SDK) has been used to write and execute the Java application for Wire SNIPs. It consists of a few basic development tools and libraries that have created the process planning application for the prototype system and also contained a set of useful utilities that have debugged and documented the Java source code. In addition, the Java SDK included the necessary application programming interface (API) that provides a
library of definitions describing how Java should communicate with the ObjectStore DBMS. The Java API to ObjectStore essentially contains classes of related functionality that were used to construct the graphical user interface (dialog), to access the databases and to identify the inputs to and outputs from the Wire SNIPs. Figure 7.5 shows some of the core dialogs that were used in Wire SNIPs to capture the product and manufacturing information from the system users. The Project dialog was the opening dialog and was linked to the Workpiece dialog acquiring the product data and the Workplan dialog obtaining the manufacturing data. The characteristics of these dialogs corresponded to the STEP-NC entities, in which the project is the top-level entity of the STEP-NC process plan indicating the workpiece upon which the workplan was to be performed. Such as clear distinction of the dialogs was to facilitate the eventual storing of the data captured from the Workpiece and the Workplan dialogs into the product and manufacturing databases respectively.

![Figure 7.5 Wire SNIPs graphical user interfaces](image)

Some of the commercial applications of Java include its use as a middleware to communicate between clients and server resources, such as the access to database. Its highly versatile language, through the use of SDK, is also making significant inroads in embedded systems such as hand-held devices and car computers. Hence, Wire SNIPs was expected to be
portable and executable on any third party implementations, such as web browsers or device-specific virtual machines.

7.3 Functional structure of Wire SNIPs

This section describes the two main functionalities of Wire SNIPs, which include managing the databases and planning the WEDM process.

7.3.1 Managing Wire SNIPs databases

Wire SNIPs databases consist of the product database concentrating on the information about the product design, and the manufacturing database focusing on the information about WEDM manufacturing capability. Both the databases have been developed in ISO 14649, which are consistent with Lee and Bang (2003), who have argued that the standard can be used as a database for machining data, which has all the data of CAD/CAM and CNC systems. The instances of the WEDM classes or objects were manipulated in Wire SNIPs databases by performing the following operations:

a. Start session by
 - Creating a session
 - Creating a database to hold the objects or opening a database to read, modify or store the objects
 - Starting a transaction to facilitate the manipulation of the objects in the session

b. Create database roots by
 - Assigning the required objects to serve as the entry points into the database or the navigation references to access a collection of related objects

c. Store objects in a database by
 - Referring to the database roots

d. Retrieve objects in the database by
 - Referring to the database roots or performing an associative query

e. Delete objects in the database by
 - Disconnecting the unwanted objects from their relationships
 - Destroying the unwanted objects
Chapter 7

f. End session by
 - Committing the transaction to execute the logical unit of work
 - Closing the database
 - Terminating the session

However, the ObjectStore class files have to be compiled and post-processed before it can be executed in the Wire SNIPs application. This was because the ObjectStore DBMS required the object to be made persistent capable before an application could store that object in the database. The term persistent capable refers to the capacity of an object to be stored in a database (ObjectStore 2003). The post-processor added a few lines of code in the class files allowing the ObjectStore DBMS to recognise the state of these objects.

7.3.2 Planning WEDM process

The information manipulation operatives of Wire SNIPs were based on the IDEF0 diagrams illustrated in figure 5.3 and figure 5.4. It followed a hierarchical structure of generating a feasible STEP-NC process plan according to the different information describing the manufacturing capabilities of the WEDM process. During the initial stage of process planning, the machining_features were to be recognised and a set of wire edm_machining_operations was to be determined for each feature by using a rule-based reasoning tool considering feature types, geometric information and tolerance. As this was not the primary aim of the research, the activity was assumed to have been carried out and the essential product information was assumed to have been stored in the product database. However, the remaining product information relating to the WEDM component was captured from the system users. This was carried out through the Workpiece dialog capturing the relevant STEP-NC entities related to the characteristics of the workpiece such as the material and bounding_geometry_select (shape and size of the workpiece).

Wire SNIPs mainly focused on the planning of the WEDM machining operation and the generation of the STEP-NC process plan. Figure 7.6 shows the how the resources, processes and strategies instances of the WEDM MModel facilitated the planning of the STEP-NC compliant WEDM machining operation. The typical planning activities included specifying the various STEP-NC entities associated with the characteristics of the WEDM machining operation such as the wire_tool, wire edm_machine_functions, workpiece_setup, wire edm_machining_operations, wire edm machining_strategy, wire edm technology and
wire edm_approach_retract_strategy. The planning of the WEDM machining operation also concentrated on:

- Determining the workingsteps based on the desired surface quality and the required number of cuts,
- Including additional workingsteps for the cut_through and the slug_removal operations,
- Identifying the machining precedence relations between operations in terms of the cutting modes such as roughing, finishing and surface finishing,
- Storing the product and manufacturing information in the respective product and manufacturing databases, and
- Facilitating the generation of the STEP-NC process plan.

Figure 7.6 STEP-NC WEDM machining operation Planning activities

In addition to the above-mentioned declarative knowledge captured from the system users, Wire SNIPs has provided the procedural knowledge required to plan the WEDM machining process. The declarative knowledge explicitly represents the WEDM process information whereas the procedural knowledge implicitly represents the WEDM process information through rules, expressions and equations that infer process capabilities from the input parameters (Giachetti 1999). As for the Wire SNIPs, it has particularly made use of the machining process logic and rules to define how the strategic decisions are reinforced and achieved.
The decision-making logic and rules developed within Wire SNIPs were limited to pre-defining the workingsteps. This logic and rules perform logical reasoning and deduce new knowledge by applying rules to facts so that process planning decisions can be made. One of the crucial logic and rules included determining the machining sequences without violating the machining precedence relations between machining operations. As each workingsteps only requires one wire edm_machining_operation for machining a feature on a component, the logic of operation followed a sequential order, which was roughing, finishing then surface finishing. The rules for sequencing these machining operations are based on the technological constraint of the WEDM machine, such as the number of cuts to achieve the required surface finishing quality. Different WEDM machine vendors have different sets of performance measures, e.g. one machine may require three cuts to achieve the specified surface finishing but another machine may be able to do it with just two cuts. However, the Wire SNIPs has assumed such machining characteristics, which are outside the scope of this research. Thus, Wire SNIPs has been constructed to perform all the three machining modes based on an example part, which could be found in the ISO/DIS 14649-13.

7.4 Operational structure of Wire SNIPs
This section describes the operational structure of the Wire SNIPs by identifying the programming procedure to generate the STEP-NC process plan for WEDM manufacturing.

7.4.1 Programming procedure of Wire SNIPs
The programming procedures on using the Wire SNIPs has been based on the system framework identified in chapter 5. It mainly sought inputs from the system users via dialogs, which were displayed according to the WEDM information models, as described in section 7.2.4. The Project dialog was the first dialog that appears on the screen each time a new project is created. Figure 7.7 shows the Project dialog, which serves as a starting point of the data-input process, which was basically mapped from the STEP-NC project entity. From this dialog, the system users are linked to the Workpiece dialog describing the attributes of the workpiece entity and the Workplan dialog describing the characteristics of the WEDM constraints, the WEDM capability and the WEDM schema.
Chapter 7

The relevant attributes of the workpiece entity were captured in the Workpiece dialog. They included the material of workpiece, the shape and size of workpiece, and the location of feature coordinate system relative to the workpiece origin. Most of the attributes were featured in a Java combo-box, which aids the system users in selecting the various options. For example, the attributes of the bounding_geoemetry_select, which described the bounding geometry of the workpiece as a block or a right_circular_cylinder, are displayed inside the
combo-box in a pull-down fashion. The other attributes of the workpiece, such as global_tolerance, its_rawpiece and its_geometry, were not considered in Wire SNIPs as they have little/no effect on the machining operation or machining toolpath. Figure 7.8 illustrates the Workpiece dialog depicting the various attributes of the workpiece entity.

As for the Workplan dialog, the description of the workplan entity took centre stage. It mainly serves as the data entry point for an ordered sequence of machining_workingsteps representing the machining process on a specified area of the workpiece. In the case of Wire SNIPs, the machining_workingsteps are characterised by the wire_edm_machining_operation, which defines all the machining operations and technology specific data needed to carry out a WEDM process. The data is captured via the Java tabbed pane, which was divided into WEDM resources, WEDM processes and WEDM strategies, as shown in figure 7.9.

The WEDM-resources-tab captures the description of the wire_tool and the wire_edm_machine_functions, which denotes the on/off state of the coolant to be applied during machining. Whereas, the WEDM-processes-tab allows the system users to define the threading point of the pre-drilled hole, the starting point of the cutting process and the cutting-off point of the tag. It also involves the input of the required surface finishing quality and the number of cutting operations.

On the other hand, the WEDM-strategies-tab provides a selection of the types of approach and retract strategies, which were defined relative to the start and end points of the cutting operation. These strategies included the along_path_strategy specifying an arbitrary machining toolpath, the linear_strategy specifying a linear segment and the arc_strategy specifying a linear-arc segment. In addition to the representation of the machining_workingsteps, the Workplan dialog also considered the locations of the setup and the workpiece coordinate systems. The former describes the location of the setup coordinate system relative to the machine coordinate system, while the latter describes the workpiece coordinate system relative to the setup coordinate system, referred in appendix IV.
Entity workplan;
SUBTYPE OF (program_structure);
its_elements: machining_workingstep[];
its_channel: OPTIONAL;
its_setup: setup;
its_effect: OPTIONAL;
END_ENTITY;

Entity machining_operation;
ABSTRACT SUPERTYPE
SUBTYPE OF (operation);
its_id: String,
retract_plane: double,
start_point: cartesian_point,
its_strategy: wire edm_machining_strategy;
its_tool: wire_tool;
its_technology: wire edm_technology;
its_machine_functions: wire edm_machine_functions;
END_ENTITY;

Entity wire edm_machining_operation;
SUBTYPE OF (machining_operation);
offset: double,
approach: wire edm_approach_retract_strategy;
retract: wire edm_approach_retract_strategy;
thread_point: cartesian_point;
cut_end_point: cartesian_point;
END_ENTITY;

Figure 7.9 Wire SNIPs workplan dialog depicting the STEP-NC workplan, machining operation and wire edm machining operation entities
7.4.2 Generation of WEDM STEP-NC process plan
The format of the process plan generated from Wire SNIPs was not designed for any specific CNC machine. Instead of providing the centre line of the cutting toolpath, the STEP-NC neutral format directly exploits the manufacturing features to execute and control the machining operation. Figure 7.10 illustrates Wire SNIPs generating a STEP-NC process plan, which is actually a text file that was compliant with ISO 10303-21. The process plan captures not only a full description of the part but also all the essential information describing the characteristics of the WEDM machining process. Since, STEP-NC defines the data representing working steps, which essentially are a library of specific machining operations performed at the CNC, any controller would be able to calculate the tool path based on definitions contained in formatted routines integrated within the controller (Lewis 2002). The STEP-NC process plan generated from Wire SNIPs and based on the case study can be found in appendix II.

Figure 7.10 Wire SNIPs generating a STEP-NC process plan
Chapter 8

CASE STUDY, TESTING & RESULTS

8.1 Introduction
This chapter describes the testing of Wire SNIPs through the use of the example case study found in ISO/DIS 14649-13. It also forms the basis of critically evaluating the author's STEP-NC compliant WEDM information models driving the Wire SNIPs. The evaluation has been carried out by comparing the information residing in these WEDM information models with the ISO 6983 based information that has been supplied to the two commercial WEDM CAD/CAM systems. These systems include the PEPS Solid Cut Wire EDM together with the PC FAPT Cut i and have been benchmarked in terms of the programming procedures and the programming/machining parameters in the evaluation.

8.2 Case study
The first WEDM example part used in the case study is from the STEP-NC standard and is a rectangular block measuring 70 x 40 x 30 mm. It requires the machining of a 20 mm square die opening, as shown in figure 8.1. The machining of a die opening, which is widely machined by the WEDM process, has been used as the case study. It is commonly required in the machining of most mechanical and automotive parts. Table 8.1 shows some of the essential properties of the WEDM example part 1 and the wire tool together with the relevant characteristics of machining the 20 mm square die opening.

Figure 8.1 WEDM example part 1 (ISO/DIS14649-13 2003)
Chapter 8

Table 8.1 Machining characteristics of the WEDM example part 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece size</td>
<td>70 x 40 x 30 mm</td>
</tr>
<tr>
<td>Workpiece material</td>
<td>ST221 Cold Die Steel</td>
</tr>
<tr>
<td>Required surface finishing quality</td>
<td>Ra 0.4 μm</td>
</tr>
<tr>
<td>Wire diameter</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>Wire material</td>
<td>ST234 Cobra Cut A</td>
</tr>
<tr>
<td>Number of cuts</td>
<td>1 roughing, 1 finishing, 1 surface-finishing</td>
</tr>
<tr>
<td>Approach technique</td>
<td>Linear (roughing)</td>
</tr>
<tr>
<td>Retract technique</td>
<td>Linear (roughing), Arc of radius 1 mm (surface-finishing)</td>
</tr>
<tr>
<td>Cut start point</td>
<td>10,0,0</td>
</tr>
<tr>
<td>Cut end point (Tag)</td>
<td>9,0,0</td>
</tr>
<tr>
<td>Thread point</td>
<td>10,10,0</td>
</tr>
<tr>
<td>Coolant</td>
<td>On</td>
</tr>
<tr>
<td>Upper nozzle</td>
<td>Off</td>
</tr>
<tr>
<td>Lower nozzle</td>
<td>On</td>
</tr>
</tbody>
</table>

The second example part also requires the machining of a die opening with inclined surface, as shown in figure 8.2 and table 8.2. The STEP-NC process plans for machining these two WEDM example parts can be found in appendix III and are mainly used to evaluate the performance of Wire SNIPs.

![Figure 8.2 WEDM example part 2 (ISO/DIS14649-13 2003)](image)

Table 8.2 Machining characteristics of the WEDM example part 2

<table>
<thead>
<tr>
<th>Description</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece size</td>
<td>20 x 10 x (not specified) mm</td>
</tr>
<tr>
<td>Workpiece material</td>
<td>Cold Die Steel</td>
</tr>
<tr>
<td>Required surface finishing quality</td>
<td>Ra 1.8 μm</td>
</tr>
<tr>
<td>Wire diameter</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>Wire material</td>
<td>Cobra Cut</td>
</tr>
<tr>
<td>Number of cuts</td>
<td>1 roughing</td>
</tr>
<tr>
<td>Approach technique</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Retract technique</td>
<td>Linear</td>
</tr>
<tr>
<td>Cut start point</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Cut end point (Tag)</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Thread point</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Coolant</td>
<td>On</td>
</tr>
<tr>
<td>Upper nozzle</td>
<td>Off</td>
</tr>
<tr>
<td>Lower nozzle</td>
<td>Off</td>
</tr>
</tbody>
</table>
8.3 Commercial WEDM CAD/CAM systems

The evaluation of the WEDM information models outlined in chapter 6 was supported by the use of two commercial WEDM CAD/CAM systems. One of the systems was the PEPS Solid Cut from Camtek Ltd (2005), which also designs, develops and markets a range of CAD/CAM software for the other CNC machining processes, such as milling, turning and laser cutting. PEPS Solid Cut operates on an integrated modular software platform facilitating the definition of the machining profile by means of the CAD system and the application of the machining parameters through the CAM system. The PEPS Solid Cut CAD system has a flexible translator interface supporting a number of industrial data transfer standards when importing CAD drawings and data models, such as IGES, AutoCAD DWG and STEP. Figure 8.3 illustrates a machining simulation of the WEDM example part 1 carried out by the PEPS Solid Cut.

![Figure 8.3 PEPS Solid Cut simulating the machining of the WEDM example part 1](image)

PEPS Solid Cut has a set of post processors serving the need to generate a specific NC part program for the different WEDM machine controllers including the Agievision, Charmilles, Mitsubishi and Sodick controls. It is specially written as an offline-programming tool. The common applications of PEPS Solid Cut can be found in precision machining together with
tool and die making industries. These industries manufacture typical products such as cutting tools with different rake angles, cams and gears of complex profiles, and extrusion dies with variable land features.

FAPT was the second commercial WEDM CAD/CAM system used in the evaluation. It was obtained from 600 Centre (2005), which produces a wide variety of machine tools including the Fanuc Robocut WEDM machine. FAPT is exclusively dedicated to the Robocut machine, which is recognised for establishing the first automatic wire threading system using the annealing and thermal cut off technique. In addition to the standard CAD and CAM features, FAPT has various types of intelligent cutting control functions that enable the Robocut machine to yield an optimum machining process. These intelligent functions together with the adaptive control software facilitates the selection and adjustment of the cutting conditions according to the changes in workpiece thickness and the cutting types such as corners and tapers, while maintaining the cutting efficiency and avoiding the wire breakage.

Figure 8.4 FAPT programming the machining setup for the WEDM example part 1

In addition, FAPT has several machining routines, which promote higher machining productivity when cutting multiple profiles on a single workpiece by maximizing the
unattended operation of the machine, as shown in figure 8.4. The programming on FAPT was commonly performed off-line, which only requires the system user to enter the details of the cutting profile, size of workpiece, material, wire size and the number of roughing and finishing cuts. It is often put to effective use in producing punch and cut-off dies and is capable of handling the machining using a wire diameter as small as 0.05 mm.

8.4 Basis of evaluating Wire SNIPs

The basis of evaluating Wire SNIPs has been carried out by examining the programming procedures and the part program of PEPS Solid Cut and FAPT and is outlined below.

8.4.1 PEPS Solid Cut and FAPT programming procedures

The general procedures for producing a NC part program using PEPS Solid Cut and FAPT could be broken down into 5 stages. It consists of creating/importing the machining profile, translating the profile into a machining toolpath, determining the machining operations, selecting the cutting conditions and post-processing the NC data into a controller-specific part program, as shown in figure 8.5.

![Diagram](image)

Figure 8.5 General programming procedure of commercial WEDM CAD/CAM system based on ISO 6983 standard
The first stage is mainly concerned with the definition of the part geometries, which can be either created by using the existing CAD drawing tools or imported from other CAD packages. It also requires the details of workpiece, which assist in the subsequent graphical simulation of the machining process. The second stage involves the translation of the part geometries into wire tool centre cutting location allowing the machine controller to identify the starting and leading points. For the example parts, the starting point is the location where the wire threaded through a pre-drilled hole in the workpiece, whereas the leading point provides the location for the wire to feed into the machining toolpath. More importantly, this stage ensures that there are no breaks in the machining toolpath.

The third stage focuses on determining the type of machining functions and machining routines to be used on the selected WEDM machine. These machining functions include the automatic wire threading system and intelligent cutting control functions, while the machining routines specify the basic cutting mode, cut-off type, cutting direction, and approach/retract strategy according to the types of WEDM parts, as shown in figure 6.6.

Next, the optimum cutting parameters yielding the required surface finishing quality are applied to the machining toolpath. The cutting parameters are easily selected from a set of standard cutting conditions, which were pre-defined by the specific WEDM CAD/CAM knowledge-based system and dependent on a number of factors such as the cutting speed, surface roughness, number of cuts, workpiece and wire tool.

Lastly, the machining instructions were generated according to the required machine controller. These machining instructions could be simulated to visually verify the machining operations and possibly eliminate any collision of the wire tool/wire guide with the setup tools before executing the actual machining process.

8.4.2 PEPS Solid Cut and FAPT NC part programs

The NC part programs generated from the PEPS Solid Cut and FAPT were based on the ISO 6983 standard. These systems primarily focused on the wire tool centre cutting motions and the machine switching functions, which were specified in G & M codes. However, different types of CNC required a dedicated post-processor in order to execute these codes giving instructions about the motions of the machine and the switching states of machine functions.
Figure 8.6 and 8.7 show the generation of a WEDM part program from PEPS Solid Cut for a Mitsubishi control and from FAPT for a Fanuc control respectively.

Figure 8.6 PEPS Solid Cut generating an ISO 6983 NC part program for example part 1 for Mitsubishi WEDM control

The machine-specific post-processor customised certain G & M codes in the ISO 6983 NC part program for a particular CNC vendor. It would define a unique code for a machining characteristic that was exclusive to a WEDM machine. For example, the G60 corner strategy and the G64 advanced offsetting were only available at the Charmilles machines (Camtek 2005). The former code changed the wire speed to maintain the finish quality on corners, whereas the latter code applied an offset parallel to the existing taper angle of the wire. In addition, the cutting conditions for the various WEDM CNCs were represented differently. For example, the cutting conditions reflected in the FAPT part program generated for the Fanuc control were represented as ‘S1D1’, which specified the condition number and the offset number, as shown in figure 8.7.

However, these cutting conditions are represented as ‘E1F1H1’ in the PEPS Solid Cut part program generated for the Mitsubishi control, as highlighted in figure 8.6. These NC part
programs, which are based on the same case study, can be found in appendix V. These ambiguities in the representation of the NC part programs for the different WEDM CNC vendors causes a major problem to the exchange of data and the interoperability of part programs when machining a component at different machine.

8.5 Test results

This section provides a comparison between the different NC part programs/STEP-NC process plan generated by the FAPT, PEPS Solid Cut and Wire SNIPs. The comparison is primarily based on the implementation of these NC part programs/STEP-NC process plans and the programming/machining parameters.

8.5.1 Directional flow of data

The PEPS Solid Cut and FAPT methods of generating a part program have an effect on the provision of the feedback among the different and otherwise incompatible computer platforms. These conventional methods restrict the flow of data to a top-down approach.
making it difficult to modify or correct the final NC part program at the machine shopfloor without gaining a certain level of understanding of the G & M codes. Figure 8.8 shows the unidirectional data flow existing in the conventional method of generating an ISO 6983 part program. This effect could be traced to the CNC, which has no access to the product and process information residing in these CAD/CAM systems. Therefore, any major modification or correction to the NC part program could only be carried out by repeating the programming procedure and calculating a new cutting toolpath. Moreover, the ambiguous definition of the G & M codes provides the loopholes in accommodating and satisfying the new machining functionality, such as the Charmilles G60 and G64 codes. As such, it causes great difficulty in exchanging essential information about the machining process between the different CAD/CAM systems and CNCs.

On the other hand, the Wire SNIPs method of generating a STEP-NC process plan provided a bi-directional flow of data. It does not require a separate toolpath file, post-processor and G & M codes in order to produce the neutral-format STEP-NC process plan, as shown in figure 8.9. The figure also shows how the Wire SNIPs process plan could be sent to a WEDM CNC for converting the machining instructions into specific machine codes through the use of the STEP-NC compiler.

Unlike the PEPS Solid Cut and FAPT NC part programs defining only the cutting motions, cutting conditions and cutting offsets, the Wire SNIPs process plan went beyond the information that the machine control required. Wire SNIPs provides an unambiguous and full coverage of the manufacturing process by specifying the wire tool, tolerances, set up, task plan and task execution, which were based on the STEP-NC standard.
8.5.2 Programming/Machining parameters

The various programming or machining parameters needed to drive the PEPS Solid Cut, FAPT and Wire SNIPs have also been compared. The aim of such a comparison was to investigate the viability of the STEP-NC standard for the WEDM process. By doing so, it enabled the identification of the additional process data for the ISO/DIS 14649-13 standard in order to fully satisfy the various requirements of planning the WEDM process. Table 8.3 compares the STEP-NC entities used in Wire SNIPs against the programming characteristics utilised in the PEPS Solid Cut and FAPT.

The table shows that PEPS Solid Cut and FAPT did not pay particular attention to the definition of the workpiece and the wire tool, and focus mainly on the calculation of the cutting toolpath. The specification of the coolant has also been neglected largely due to the growing trend of conducting the WEDM machining process in a tank filled with deionised water instead of applying direct jet flushing near the sparking zone. Although, most of the PEPS Solid Cut and FAPT programming characteristics measured up to the STEP-NC entities, they were not reflected in their respective NC part programs.
Table 8.3 Comparison between the PEPS Solid Cut, FAPT and Wire SNIPs programming/machining parameters

Table 8.4 shows the additional WEDM process data for the ISO/DIS 14649-13 standard. The author has listed these data against the appropriate WEDM STEP-NC entities. Some of this data has been described in section 6.4, the others include:

Escape amount – exists only when the cutting of the tag is performed at the very last stage, as illustrated in figure 8.10. It provides a means for the wire to approach/retract from the machining profile, thereby reducing the visible tag marks on the WEDM part.

![Figure 8.10 Escape amount for punch and die cutting](image-url)
Nozzle gap – is the distance between the upper and low wire guides. It assists in the calculation of the tension and maximum angle of the wire, and the graphical simulation of any possible collision between the wire guides and the jigs or fixtures.

The attributes of escape amount and nozzle gap need to be added in the `wire_edm_machining_operation` and `wire_edm_machine_functions`, as shown in table 6.4 and table 6.2 respectively.

<table>
<thead>
<tr>
<th>STEP-NC Entity</th>
<th>Additional Information</th>
<th>Wire SNIPs (ISO 14649-13)</th>
<th>PEPS Solid Cut (ISO 6983)</th>
<th>FAPT (ISO 6983)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEDM Machining</td>
<td>Escape amount</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEDM Machining</td>
<td>Reverse cutting</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Strategy</td>
<td>No-core cutting</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Multiple cutting</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Tag identification</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>WEDM Machining</td>
<td>Nozzle gap</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Functions</td>
<td>Automatic wire threading</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>WEDM Technology</td>
<td>Machining feedrate controlling</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Cutting parameters setting</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Machine Information</td>
<td>Machining envelope</td>
<td>x</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Table 8.4 Identification of the additional process data for the drafted ISO 14649-13

The accuracy of the output generated from the Wire SNIPs has measured up to the STEP-NC process plan featured in the case study found in the ISO/DIS 14649-13 standard. It has specified the `machining_workingsteps` describing the task and the machining conditions under which the task has to be performed. Thus, Wire SNIPs has successfully demonstrated that the system framework for the WEDM process has identified both the essential process planning activities together with their interrelationships, and the general information requirements containing the basic data that collectively describes the applications following product design.

In addition, this piece of research work has identified the additional information relating to the WEDM manufacturing features and the WEDM process. It has also resolved the problem of sharing this essential information among the different CAx systems and CNC’s. The additional process data provides all essential information requirements needed in the CAD to CNC process chain and is represented in a machine and technology independent format. As a result, it fulfils the concept of interoperating the information requirements among these different systems. As mention in the concluding paragraph of section 6.4, this additional information would make a significant contribution to the development of the ISO/DIS 14649-13 standard.
Chapter 9

CONCLUDING DISCUSSION

9.1 Introduction
This section discusses the two major research areas presented in the thesis namely the theoretical research and the experimental research. The theoretical research involved the designing of a CAx system framework and the information modelling for WEDM component manufacturing within a STEP-NC compliant manufacturing environment. As for the experimental research, it was concerned with the development and the testing of the Wire SNIPs.

9.2 STEP-NC compliant WEDM CAx system framework
A STEP-NC compliant CAx system framework for WEDM component manufacturing has been proposed in this thesis. It was developed with the intent of applying the evolving STEP-NC technology to support the WEDM process by modelling the process planning activities and the information requirements needed to machine the part. The system framework covered a range of WEDM process planning tasks, which included workpiece setup, machining task planning and process plan generation. The input to the system framework required the descriptions of the product design specification in the form of a PModel and the manufacturing process capability in the form of a MModel. The output from the system framework was a description of the WEDM machining operations, which was compliant with the STEP-NC standards and could be used to machine the WEDM part. It has been referred to as a STEP-NC process plan, identifying the knowledge and constraints governing the use of the process. This was in direct contrast to the NC part program based on the ISO 6983 standard. Even if ISO 6983 were to be updated with more complex toolpath types, NC codes would still be lacking in information on material types, tolerances, surface finish, expected forces, and other product or process data that could be used to support intelligent control (Procter et al. 2002).

The system framework played the vital role of a CAPP system linking the various product designing and manufacturing activities. Although, the CAD and CAM systems have
revolutionised NC part programming, these systems have been developed in total isolation and remained largely disintegrated. CAPP systems support the process planning by accumulating machining knowledge and reasoning capabilities, and have taken an important role in integrating CAD and CAM (Rho et al. 2004). Similarly, the author’s system framework was designed to represent, capture, arrange and utilise the knowledge of the product design specification together with the manufacturing process capability for WEDM process planning. It made use of the IDEF0 activity modelling methodology to gain an understanding of the interactions among the various WEDM process planning activities. At higher levels of the WEDM process planning hierarchy, the choice of machines, wire tool, workpiece setup and machining operations were identified while at the lower levels, the machining conditions and machining strategies were defined together with the generation of the process plan for the given manufacturing feature of the part. As such the framework also provided an initial overview of the information flow between the activities indicating how a decision made by one activity was affected by the results of other activities.

The major goal of STEP-NC is to allow information about the product design, process planning and manufacturing execution to be exchanged among and shared by different design, engineering and manufacturing software systems. However due to the unconventional material removal characteristic of the WEDM process, it was very difficult to plan an inclusive workplan that worked on most WEDM machine controllers. The WEDM process was driven by a number of machining parameters and strategies, which were machine and technology dependent. For example, the offset needed to compensate for the machining gap caused by the sparking phenomenon together with the machining strategy in order to improve the accuracy of specific geometrical features, such as sharp corners, varies from machine control to machine control. The methodology for making the best choice of the machining parameters and strategies was presently assisted by the expert system based on the objective quality target criteria, including the required surface finish, workpiece and wire materials (Richard et al. 2004). However, the expert system was proprietary making it difficult to be standardised and causing interoperability issues between different systems. As the expert/intelligent system formed an essential part of the CAD/CAM system, the possible solution was to separate the information that the vendors were willing to exchange from the proprietary methods and procedures that they wanted to protect. The STEP-NC data model for the WEDM process aims to support such an approach by including the information that was required to execute the expert system. By doing so, the data model captured most of the
information required to produce an interoperable workplan that was not governed by the type of vendor systems used.

9.3 STEP-NC compliant WEDM information modelling

The WEDM information models aim to improve the integration between the highly automated CAD/CAPP/CAM systems and CNCs. These information models were based on the mature area of research intensely explored by several authors (Liu and Young 2004, Molina et al. 1995). The representation of these WEDM information models was not pursued independently but was sought in an integrated manner supporting the early evaluation of the design for manufacture. This has been carried out through the use of the STEP-NC data interface for the WEDM process, specifying the various data entities, their properties, behaviours and interactions with other entities.

Such a concept of data-driven applications, which included engineering applications and software tools, has emerged in response to the need for integrated and flexible computer environments to support design and manufacturing activities of a product (Molina and Bell 1999). As a result of integrating the WEDM information models, it supported the preliminary evaluation of both the feasibility of product design and machining process planning. The product information could be shared by machining process planning and the manufacturing information could be made available for product design.

The PModel and MModel have provided a common source of well-defined and structured information relating to the WEDM process. They provide the information requirements supporting the decision-making in the process of designing and manufacturing a product. The PModel captures all the essential data relating to the workpiece material, shape and size, the product G, D & T together with the manufacturing planning data. This data has been classified into three key elements in the PModel namely the WEDM billet, WEDM product design and WEDM manufacturing view. On the other hand, the three core elements of MModel were adapted from Molina et al. (1995), namely WEDM resources, WEDM processes and WEDM strategies. These elements mainly described the physical and functional properties of the WEDM process representing the resource constraints and the process capabilities respectively. They also included the representation of the various machining strategies imposed by the composition of the WEDM resources and WEDM processes through the use of the expert system, such as identifying the cutting conditions.
In addition, the extended WEDM information models have been identified to represent complete and realistic manufacturing process knowledge. It should be noted that ISO/DIS 14649-13 standard is currently in the development stage and the important machining process attributes have yet to be fully specified. These attributes were determined by making a comparison between STEP-NC and two commercial CAD/CAM systems based on the ISO 6983 standard, namely PEPS Solid Cut and FAPT. Hence, the extended information models enable the different data-driven applications to use the knowledge and support the planning of the process more effectively. However, the main challenge of WEDM information models is to facilitate a practical platform for interoperable CNC manufacturing satisfying a completely integrated manufacturing system. For example, the PEPS Solid Cut has a different perception on the machining strategies as compared to the FAPT. Therefore, the WEDM information models would have to capture the knowledge from different functional perspectives cater to most CAx needs, and thereby provide an opportunity to manufacture a part at different locations or companies.

9.4 STEP-NC compliant WEDM CAx prototype system development

A computational prototype entitled Wire SNIPs has been designed and implemented to demonstrate the viability of the STEP-NC compliant information models for WEDM component manufacturing. The system exploits the instances of the PModel and MModel to generate a feasible machining workplan by using process planning rules in terms of the machining precedence (workingstep) and surface finish accuracy defined in Ra. It also provides the basis for making an important step forward in integrating the various product design and machining process planning activities and facilitating the interoperable manufacturing of the WEDM part through the use of the STEP-NC data interface. The implementation of Wire SNIPs was made up of three main stages, namely the representation of the information models, the development of the DBMS and the construction of the system application, as described in section 7.2. During the first stage, the UML was used to model the information requirements supporting the WEDM process planning activities. Although EXPRESS was used to specify the STEP-NC entities, it was inadequate for capturing functional interaction between the entities as it was more oriented towards capturing the constraints (Al-Ashabb and Young 1997). UML has clearly represented the WEDM information models in terms of classes, attributes, relationships and operations allowing the design of the database schema to be easily implemented in the object-oriented DBMS.
Chapter 9

The ObjectStore DBMS was utilised to provide common information storage among the different data-driven applications. It was capable of extending direct information sharing to different design and manufacturing departments using the object-oriented database based on the UML. The ObjectStore DBMS was incorporated into Wire SNIPs by simply providing the vital link or interface to the Java programming language. Lastly, Wire SNIPs applications were developed in Java defining the computing operations relating to the WEDM process planning activities. The easy-to-use interface drastically reduced the amount of code required to manage the Java objects, and still provided the full capability of Java to define, manipulate and share important application data.

At the CAM level, the system was capable of generating the STEP-NC process plan for the WEDM process based on the information specified by the PModel and MModel. The information was organised in an object-oriented manner facilitating Wire SNIPs to select, to the best extent possible, the most appropriate WEDM resources, processes and strategies from the array of available options. In addition, Wire SNIPs was able to query the PModel/product database to obtain the product design specification and then query the MModel/manufacturing database for the corresponding manufacturing capabilities information. Hence, the compatibility of the product designs with the manufacturing capabilities could be determined or redesigned.

9.5 Testing of Wire SNIPs

Wire SNIPs has been tested to gauge the performance of its functionality. The end result generated from the system was passed onto a STEP-NC interpreter to parse it and extract data from it. In addition, the interpreter was used to activate the toolpath generator in order for the latter to calculate the toolpath for each manufacturing feature and send the wire tool motions to the machine control board, which was to produce motion/pulse signals to the motor. However, the testing of Wire SNIPs was limited to the computing functions of planning the WEDM process and generating the STEP-NC process plan. This has been primarily carried out by evaluating the product and manufacturing information based on the WEDM PModel and MModel. The product information included the geometrical, topological, tolerance, material and surface finishing quality attributes of the WEDM part. The geometrical and topological information were both represented by manufacturing feature-based representations but this was not the main focus of the thesis. As for the manufacturing information, it included information about the WEDM machining operations, wire tool and
WEDM machining parameters. This information described the required operations to machine a specific WEDM manufacturing feature, the appropriate wire tool to use, and the optimal cutting condition to perform the machining operations.

Wire SNIPs annotated the design specification of a product with richer information about the WEDM manufacturing process capabilities. All this information was reflected in the STEP-NC process plan specified in a format that was neutral to most computing platforms enabling the sharing of data among the different design and manufacturing departments. Unlike the NC part program based on the ISO 6983 standard, which merely described the cutting toolpath and the machine switching functions, the STEP-NC process plan captured the crucial information about the WEDM characteristics in the form of a wire edm_machining_operation. However, a certain level of detailed planning of the WEDM machining process is still required and could only be decided at the machine during runtime. The STEP-NC process plan did not specify the sequence of the events or the instant at which the unit task has to be performed, such as the turning the on/off of a switch. These decisions are instead left to the operator or in real time to the CNC (Zhang and Liu 2004). Thus, the application of the STEP-NC standards to specify the geometric and manufacturing information at the machine tool has provided the CNC with the vast opportunities to machine a part more intelligently.
Chapter 10

CONCLUSIONS AND FUTURE WORK

10.1 Introduction
This chapter identifies the major contribution to knowledge and the conclusions drawn from the research. It also suggested the possible further work in order to extend the application of the Wire SNIPs.

10.2 Major contribution to knowledge
The major contribution to knowledge gathered from this work include:

- The design of a STEP-NC compliant CAx system framework for WEDM component manufacturing. The framework has provided a structured methodology for the design of a WEDM CAx system exploiting the product and manufacturing information requirements defined in the newly evolved STEP-NC standard. The computational implementation of the system framework has shown to be of strong potential for industrial application. It has also demonstrated the viability of the STEP-NC standard to describe the geometrical and manufacturing requirements of a WEDM component.

- The specification of the information models supporting WEDM component manufacturing. The information models have identified the additional information to ISO/DIS 14649-13 that is essential for carrying out the WEDM operations based on industrial practices and would make a significant contribution to the development of the standard. These models have also supported the concept of interoperability within a STEP-NC compliant machining process planning environment through the exchange of product and manufacturing information across the CAx to CNC process chain.

10.3 Conclusions
The conclusions formulated from this work are as follows:

i. The literature review on WEDM process has provided an in-depth research into the various academic works involving the improvement of the performance measures, the optimisation of the process parameters, the monitoring and control of the machining
process together with process development and applications. It has shown some possible trends for future research into the WEDM process.

ii. The literature review on STEP-NC has highlighted the opportunity to revamp the traditional means of programming a part for CNC manufacturing. It has shown that STEP-NC facilitates the integration of the CAx systems and CNC’s through its formal specification of representing and exchanging the product and manufacturing information.

iii. A system framework has been designed to integrate the various stages of the product life cycle from product design to manufacture for the WEDM process chain. It provided a structure for the WEDM process planning activities and their relationships that were compliant with the STEP-NC standards through the use of the IDEF0 activity modelling methodology.

iv. The system framework has also provided an overview of the information models supporting the WEDM process planning activities. These WEDM information models have effectively defined the basic system vocabulary enabling the integrated use of the information in an interoperable industrial environment by the different CAx systems and CNC’s.

v. The realisation of the WEDM information models have fully captured and represented the information relating to the design, manufacture and production functions that occurred during the design to manufacturing of a WEDM part. The application of the PModel and the MModel, which models and manages the product design and manufacturing capability for WEDM parts has provided the basis for an integrated knowledge-based process-planning environment.

vi. The WEDM information models have formed a common base of data with which all product design and manufacturing process functions interacted, thereby providing a vital mechanism through which they were integrated. These WEDM information models have been defined through the use of the object-oriented UML, which has shown to be of significant advantage in implementing the prototype system called Wire SNIPs.
vii. Wire SNIPs has been developed and implemented, and has shown the viability of the author's system framework. It has exploited the STEP-NC compliant WEDM information models identifying the product and manufacturing knowledge supporting the information requirements needed throughout the WEDM product life-cycle.

viii. Wire SNIPs has shown the performance capability of WEDM process planning and the potential for the use as an industrial tool. It has been built on the basis of structuring the information models and constructing the system applications, which has provided a systemically methodology of implementing the system framework.

ix. The testing of the Wire SNIPs has used the example test parts provided in the ISO/DIS 14649-13 standard, and thereby has proven the applicability of the research. It has evaluated not only the functionality of the system but also the information content needed to drive the system.

x. The viability of the data residing in the STEP-NC compliant WEDM information models has been evaluated by comparing it against the programming or machining parameters needed to drive the two commercial WEDM CAD/CAM systems, namely the PEPS Solid Cut and FAPT. The comparison has shown that the WEDM extended information models provide more reliable product and manufacturing information in assisting the performance of product development life cycle activities and related decision-making processes.

10.4 Future Work
The functionality of Wire SNIPs could be further explored or extended by further investigation into the following areas:

10.4.1 Consider a complete machining process logic and rules
Due to the scope of the research reported in the thesis, the machining process logic and rules residing in Wire SNIPs have been developed for the machining of a die. However, the WEDM process is also commonly used to machine parts that required no-core cutting, multiple profile cutting and cam/cam gear cutting, as explained in section 6.4. An extension of the Wire SNIPs application therefore needs to contain more specific process logic and rules for the machining of parts that are produced by the WEDM process.
Chapter 10

10.4.2 Include graphical display in the Wire SNIPs

The design of the graphical user interfaces used in Wire SNIPs has concentrated only on capturing of data giving little consideration to the interpretation of the data element to the system users. In order to provide a user-friendly graphical user interface, it needs to add pictures or figures elaborating the various information requirements needed from the user. In addition, a simulation of the WEDM process based on the output generated from Wire SNIPs would also enable the user to visualise and verify the machining sequence.

10.4.3 Apply WEDM expert system to Wire SNIPs

Wire SNIPs has simply assumed the various generator settings of the WEDM process for the example part featured in the case study. In most WEDM CAD/CAM systems, this is commonly determined through the use of the individual CNC vendor’s expert system, which aims to achieve an accurate and efficient machining operation without compromising the machining performance. Further research needs to consider on implementing an expert system into the Wire SNIPs architecture in order to identify the optimal machining condition from the infinite number of combinations of the various factors affecting the WEDM process, as described in section 4.5.5.

10.4.4 Arrange output from Wire SNIPs in XML format

The end result from Wire SNIPs was a STEP-NC process plan based on the ISO 10303-21 standard specifying an exchange structure using clear text encoding of data. The increasing use of the XML to implement e-manufacturing has generated keen research interest within the STEP-NC community. Hence, the STEP-NC process plan generated from the Wire SNIPs needs to be developed and arranged in the XML format based on the ISO/TC 10303-28 standard for the WEDM process.
REFERENCES

References

Firestone, R.F., Ceramic-Applications in Manufacturing, Society of Manufacturing Engineers, Michigan, 1988, pp. 133.

References

Huang, J.T. and Liao, Y.S., A Study of Finish Cutting Operation Number & Machining Parameters Setting in Wire Electrical Discharge Machining, Proceedings of International Conference on Precision Machining (ICPE'97), Taipei, Taiwan, 1997.

ISO International Standard 10303 Part 41, Industrial automation systems and integration -
Product data representation and exchange - Part 41: Integrated generic resource:

ISO International Standard 10303 Part 42, Industrial automation systems and integration -
Product data representation and exchange - Part 42: Integrated generic resource: Geometric

ISO International Standard 10303 Part 101, Industrial automation systems and integration -
Product data representation and exchange - Part 101: Integrated application resources:

ISO International Standard 10303 Part 104, Industrial automation systems and integration -
Product data representation and exchange - Part 104: Integrated application resource: Finite

ISO International Standard 10303 Part 203, Industrial automation systems and integration -
Product data representation and exchange - Part 203: Application protocol: Configuration
controlled 3D designs of mechanical parts and assemblies, 1994.

ISO International Standard 10303 Part 214, Industrial automation systems and integration -
Product data representation and exchange - Part 214: Application protocol: Core data for

ISO International Standard 10303 Part 240, Industrial automation systems and integration -
Product data representation and exchange - Part 240: Application protocol: Process plans for

ISO International Standard 10303 Part 514, Industrial automation systems and integration -
Product data representation and exchange - Part 514: Application interpreted construct:
Advanced boundary representation, 1999.

ISO International Standard 14649 Part 1, Industrial automation systems and integration -
Physical device control - Data model for computerised numerical controllers - Part 1:

ISO International Standard 14649 Part 10, Industrial automation systems and integration -
Physical device control - Data model for computerised numerical controllers - Part 10:

ISO International Standard 14649 Part 11, Industrial automation systems and integration -
Physical device control - Data model for computerized numerical controllers - Part 11:

ISO International Standard/Comittee Draft 10303 Part 219, Industrial automation system -
Product data representation and exchange - Part 219: Dimensional inspection information
exchange, 2002.

References

Kemmerer, S.J., STEP: the grand experience (Editor of) NIST Special Publication 939, National Institute of Standards and Technology, Gaithersburg, MD, 1999.

References

RS 274D Electronic Industries Association, Interchangeable variable block data format for positioning, contouring, and contouring/positioning numerically controlled machines, 1979.

References

Sanchez, J.A., Cabanes, I., Lopez de Lacalle, L.N. and Lamikiz, A., Development of optimum

Scott, D., Boyina, S. and Rajurkar, K.P., Analysis and optimization of parameter combination

Shah, J.J. and Rogers, M.T., Functional requirements and conceptual design of the feature-

Machining: Tooling, Methods & Applications, Society of Manufacturing Engineers,

Shoda, K., Kaneko, Y., Nishimura, H., Kunieda, M. and Fan, M.X., Adaptive Control of
WEDM with On-line Detection of Spark Locations, Proceedings of the Tenth International
Symposium for Electro-Machining (ISEM-10), Magdeburg, Germany, 1992.

Smith, G.L., Utilisation of STEP AP210 at the Boeing Company, Computer-Aided Design 34

Snoeys, R., Staelens, F. and Dekeyser, W., Current trends in non-conventional material

Sormaz, D.N. and Khoshnevis, B., Process planning knowledge representation using an

Spedding, T.A. and Wang, Z.Q., Parametric optimization and surface characterization of wire

Spur, G. and Schönbeck, J., Anode erosion in wire-EDM-a theoretical model, Ann. CIRP 42

Stovicck, D.R., The state-of-the-art EDM Science, Tooling and Production, Nelson

Suh, S.H., Cho, J.H. and Hong, H.D., On the architecture of intelligent STEP-compliant CNC,
References

References

Appendix I

LIST OF AUTHOR’S PUBLICATIONS

Appendix II

STEP-NC PROCESS PLAN
GENERATED FROM WIRE SNIPS FOR EXAMPLE PART 1

ISO-10303-21;
HEADER;
FILE_DESCRIPTION();
FILE_NAME();
FILE_SCHEMA();
ENDSEC;

DATA;
#1=PROJECT('Project', #2, (#38));

#2=WORKPLAN('Workplan', (#3, #4, #5, #6, #7), $, #29, $);

#3=MACHINING_WORKINGSTEP('WS_1', $, $, #8, $);
#4=MACHINING_WORKINGSTEP('WS_2', $, $, #9, $);
#5=MACHINING_WORKINGSTEP('WS_3', $, $, #10, $);
#6=MACHINING_WORKINGSTEP('WS_4', $, $, #11, $);
#7=MACHINING_WORKINGSTEP('WS_5', $, $, #12, $);

#8=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach\'g_Opn_1', $, 5.0, #15, #16, #18, #24, 0.2, $, #25, #26, #27, #28);
#9=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach\'g_Opn_2', #13, 5.0, #15, #16, $, #0.2, $, #27, #28);
#10=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach\'g_Opn_3', #14, 5.0, #15, #16, $, #0.2, $, #27, #15);
#11=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach\'g_Opn_4', $, 5.0, #15, #16, #20, #24, 0.2, $, #26, #27, #15);
#12=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach\'g_Opn_5', $, 5.0, #15, #16, #22, #24, 0.2, $, #26, #27, #15);
#13=CUT_THROUGH();
#14=SLUG_REMOVAL();
#15=CARTESIAN_POINT('Start_Pt', (10.0,0.0,0.0));

#16=WIRE_TOOL('wire_1', #17, 0.1, 0.2, 160, $);
#17=MATERIAL('Copper_Wire', 'CW1', $);

#18=WIRE_EDM_TECHNOLOGY($, $, true, #19);
#19=NUMERIC_PARAMETER('RA', 1.8, 'MICM');
#20=WIRE_EDM_TECHNOLOGY($,$,true,#21);
#21=NUMERIC_PARAMETER('RA',0.8,'MICM');

#22=WIRE_EDM_TECHNOLOGY($,$,true,#23);
#23=NUMERIC_PARAMETER('RA',0.4,'MICM');

#24=WIRE_EDM_MACHINE_FUNCTIONS(true,$,true,false,0);

#25=LINEAR_STRATEGY($,$);

#26=ARC_STRATEGY($,$,1.0);

#27=CARTESIAN_POINT('Thread_Pt',(10.0,10.0,0.0));

#28=CARTESIAN_POINT('Tag_Pt',(9.0,0.0,0.0));

#29=SETUP('Setup_1',#30,#32,#35);
#30=AXIS2_PLACEMENT_3D('Setup_Origin',#31,$,$);
#31=CARTESIAN_POINT('SP_1',(0.0,0.0,0.0));
#32=ELEMENTARY_SURFACE('Setup_Security_Plane',#33);
#33=AXIS2_PLACEMENT_3D('Setup_Position',#34,$,$);
#34=CARTESIAN_POINT('Setup_1',(0.0,0.0,20.0));

#35=WORKPIECE_SETUP($,#36,$,$,$);
#36=AXIS2_PLACEMENT_3D('Setup_Position',#37,$,$);
#37=CARTESIAN_POINT('Setup_1',(-10.0,-15.0,0.0));

#38=WORKPIECE('Workpiece',#39,$,$,$,#40,$);
#39=MATERIAL('DS2','Die Steel',$);
#40=BLOCK('Block_1',41,70.0,40.0,30.0);

#41=AXIS2Placement_3D('Block_Position_1',#42,$,$);
#42=CARTESIAN_POINT('WP_Pos_1',(0.0,0.0,0.0));

EDNSEC;
END-ISO-10303-21;
STEP-NC PROCESS PLAN

GENERATED FROM WIRE SNIPs FOR EXAMPLE PART 2

ISO-10303-21;
HEADER;
FILE_DESCRIPTION();
FILE_NAME();
FILE_SCHEMA();
ENDSEC;

DATA;
#1=PROJECT('ProjectTwo', #2, (#30));

#2=WORKPLAN('WorkplanTwo', (#3, #4, #5), $, #21, $);

#3=MACHINING_WORKINGSTEP('WS_1', $, $, #6, $);
#4=MACHINING_WORKINGSTEP('WS_2', $, $, #7, $);
#5=MACHINING_WORKINGSTEP('WS_3', $, $, #8, $);

#6=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach'g_Opn_1', $, 5.0, #11, #12, #14, #16, 0.2, #17, #18, #19, #20);
#7=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach'g_Opn_2', #9, 5.0, #11, #12, $, 0.2, $, #19, #20);
#8=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach'g_Opn_3', #10, 5.0, #11, #12, $, 0.2, $, #18, #19, #20);

#9=CUT_THROUGH();
#10=SLUG_REMOVAL();

#11=CARTESIAN_POINT('Start_Pt', (0.0,0.0,0.0));

#12=WIRE_TOOL('wire_1', #13, 0.25, 0.2, 160, $);
#13=MATERIAL('Copper_Wire', 'CW1', $);

#14=WIRE_EDM_TECHNOLOGY($, $, true, #15);
#15=NUMERIC_PARAMETER('RA', 1.8, 'MCM');

#16=WIRE_EDM_MACHINE_FUNCTIONS(true, $, false, false, ());

#18=LINEAR_STRATEGY($, $);

#19=CARTESIAN_POINT('Thread_Pt', (0.0,0.0,0.0));

#20=CARTESIAN_POINT('Tag_Pt', (0.0,0.0,0.0));

#21=SETUP('Setup_1', #22, #24, #27);
#22=AXIS2_PLACEMENT_3D('Setup_Origin', #23, $);
#23=CARTESIAN_POINT('SP_1', (0.0,0.0,0.0));
#24=ELEMENTARY_SURFACE('Setup_Security_Plane', #25);
#25=AXIS2_PLACEMENT_3D('Setup_Position',#26,$,$);
#26=CARTESIAN_POINT('Setup_1',(0.0,0.0,0.0));

#27=WORKPIECE_SETUP($,#28,$,$);
#28=AXIS2_PLACEMENT_3D('Setup_Position',#29,$,$);
#29=CARTESIAN_POINT('Setup_1',(0.0,0.0,0.0));

#30=WORKPIECE('WorkpieceTwo',#31,$,$,#32,$);
#31=MATERIAL('DS21','Die Steel',$);
#32=BLOCK('Block_1',#33,20.0,10.0,10.0);

#33=AXIS2_PLACEMENT_3D('Block_Position_1',#34,$,$);
#34=CARTESIAN_POINT('WP_Pos_1',(0.0,0.0,0.0));

EDNSEC;
END-ISO-10303-21;
Appendix III

CASE STUDY BASED ON THE EXAMPLE PART 1
PROVIDED IN ISO/DIS 14649-13

ISO-10303-21;
HEADER;

FILE_DESCRIPTION(
/* DESCRIPTION */ ('THIS FILE CONTAINS THE STEP-NC FILE OF A WIRE-EDM MANUFACTURING'),
/* IMPLEMENTATION_LEVEL */ '2;1');

FILE_NAME(
/* NAME */ 'WIRE_EDM_EXAMPLE',
/* TIME_STAMP */ '2003-02-28T14:17:26+01:00',
/* AUTHOR */ 'GABOR ERDOS',
/* ORGANIZATION */ 'EPFL-ICAP-LICP, LAUSANNE SWITZERLAND');

FILE_SCHEMA ('MACHINING_SCHEMA', 'WIRE_EDM_SCHEMA');
ENDSEC;

DATA;
#10=ARC_STRATEGY($,$,1);
#11=SLUG_REMOVAL();
#12=CUT_THROUGH();

#13=CIRCLE('CIRCLE_009', '#83', 1);
#14=CIRCLE('CIRCLE_010', '#84', 1);
#15=CIRCLE('CIRCLE_011', '#85', 1);
#16=CIRCLE('CIRCLE_012', '#86', 1);

#17=TRIMMED_CURVE('TRIMMED_CURVE_009', '#13', (#55), (#56), T, $);
Appendix III

#18=TRIMMED_CURVE('TRIMMED_CURVE_010',#14,#60,#61,T.,$);
#19=TRIMMED_CURVE('TRIMMED_CURVE_011',#15,#65,#66,T.,$);
#20=TRIMMED_CURVE('TRIMMED_CURVE_012',#16,#70,#71,T.,$);

#21=POLYLINE('PLINE_009',#52,#53);
#22=POLYLINE('PLINE_010',#57,#58);
#23=POLYLINE('PLINE_011',#62,#63);
#24=POLYLINE('PLINE_012',#67,#68);

#25=COMPOSITE_CURVE_SEGMENT($,T.,#21);
#26=COMPOSITE_CURVE_SEGMENT($,T.,#17);
#27=COMPOSITE_CURVE_SEGMENT($,T.,#22);
#28=COMPOSITE_CURVE_SEGMENT($,T.,#18);
#29=COMPOSITE_CURVE_SEGMENT($,T.,#23);
#30=COMPOSITE_CURVE_SEGMENT($,T.,#19);
#31=COMPOSITE_CURVE_SEGMENT($,T.,#24);
#32=COMPOSITE_CURVE_SEGMENT($,T.,#20);

#33=PROJECT('WIRE_EDM_EXAMPLE',#39,#34);

#34=WORKPIECE('WORKPIECE',#35,0.005,$,#38,$);

#35=MATERIAL('ST221','COLD DIE STEEL',$);

#36=MATERIAL('ST234','COBRA CUT A',$);
#37=MATERIAL('"","$);

#38=BLOCK('BLOCK_001',#82,40.,30.,70.);

#39=WORKPLAN('WP',#40,#41,#42,#43,#44,#115,#117);

#40=MACHINING_WORKINGSTEP('WS_01',$,#89,#91);
#41=MACHINING_WORKINGSTEP('WS_02',$,#89,#92);
#42=MACHINING_WORKINGSTEP('WS_03',$,#89,#93);
#43=MACHINING_WORKINGSTEP('WS_04',$,#89,#94);
#44=MACHINING_WORKINGSTEP('WS_05',$,#89,#95);

#45=TOLERANCED_LENGTH_MEASURE(30.,$,0.,0.);
#46=TOLERANCED_LENGTH_MEASURE(1.,$,0.,0.);

#47=CARTESIAN_POINT('FEATORIGIN',20.,10.,30.);
#48=CARTESIAN_POINT('WORKPIECE_BBOX_LOCATION',-10.,-15.,0.);
#49=CARTESIAN_POINT('CUT_START_PT',10.,0.,0.);
#50=CARTESIAN_POINT('THREAD_PT',10.,10.,0.);
#51=CARTESIAN_POINT('CUT_END_PT',9.,0.,0.);
#52=CARTESIAN_POINT('CARTESIAN_POINT_001_OF_PLINE_009',1.,20.,0.);
#53=CARTESIAN_POINT('CARTESIAN_POINT_002_OF_PLINE_009',19.,20.,0.);
#54=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_009',19.,19.,0.);
#55=CARTESIAN_POINT('START_POINT_OF_TRIMMEDCURVE_009',19.,20.,0.);
#56=CARTESIAN_POINT('END_POINT_OF_TRIMMEDCURVE_009',20.,19.,0.);
#57=CARTESIAN_POINT('CARTESIAN_POINT_001_OF_PLINE_010,20.,19.,0.);
Appendix III

#58=CARTESIAN_POINT('CARTESIAN_POINT_002_OF_PLINE_010', (20.,1.,0.));
#59=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_010',(19.,1.,0.));
#60=CARTESIAN_POINT('START_POINT_OF_TRIMMEDCURVE_010',(20.,1.,0.));
#61=CARTESIAN_POINT('END_POINT_OF_TRIMMEDCURVE_010',(19.,0.,0.));
#62=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_011',(19.,0.,0.));
#63=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_012',(1.,1.,0.));
#64=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_011',(1.,1.,0.));
#65=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_010',(19.,0.,0.));
#66=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_011',(1.,0.,0.));
#67=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_012',(0.,19.,0.));
#68=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_012',(1.,19.,0.));
#69=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_012',(0.,19.,0.));
#70=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_012',(0.,19.,0.));
#71=CARTESIAN_POINT('CENTRE_POINT_OF_CIRCLE_012',(1.,20.,0.));
#72=CARTESIAN_POINT('SO1',(0.,0.,20.));

#73=DIRECTION('FEATZAXIS',(0.,0.,1.));
#74=DIRECTION('FEATXAXIS',(1.,0.,0.));
#75=DIRECTION('AXIS_Z_OF_BLOCK_001',(1.,0.,0.));
#76=DIRECTION('AXIS_X_OF_BLOCK_001',(0.,1.,0.));
#77=DIRECTION('Z_AXIS_OF_CIRCLE_009',(0.,0.,-1.));
#78=DIRECTION('Z_AXIS_OF_CIRCLE_010',(0.,0.,-1.));
#79=DIRECTION('Z_AXIS_OF_CIRCLE_011',(0.,0.,-1.));
#80=DIRECTION('Z_AXIS_OF_CIRCLE_012',(0.,0.,-1.));

#81=AXIS2_PLACEMENT_3D('FEAT_FRAME','#47,#73,#74);
#82=AXIS2_PLACEMENT_3D('POSITION_OF_BLOCK_001','#48,#75,#76);
#83=AXIS2_PLACEMENT_3D('POSITION_OF_CIRCLE_009','#54,#77,#$);
#84=AXIS2_PLACEMENT_3D('POSITION_OF_CIRCLE_010','#59,#78,#$);
#85=AXIS2_PLACEMENT_3D('POSITION_OF_CIRCLE_011','#64,#79,#$);
#86=AXIS2_PLACEMENT_3D('POSITION_OF_CIRCLE_012','#69,#80,#$);
#87=AXIS2_PLACEMENT_3D('SECPLANE_FRAME','#72,#$);

#88=COMPOSITE_CURVE('POCKET',('#25,#26,#27,#28,#29,#30,#31,#32),F.);

#89=GENERAL_OUTSIDE_PROFILE('WORK1','#34,('#91,#92,#93,#94,#95),#81,#45,#46,#$,#88,#$);

#90=WIRE_TOOL('WIRE1','#36,0.1,0.2,160.,$);

#91=WIRE_EDM_MACHINING_OPERATION($,$,'ROUGHING',$,10.,#49,#90,#100,
#114,0.01,#96,#97,#50,#51);
#92=WIRE_EDM_MACHINING_OPERATION($,$,'CUT THROUGH',$,12,10.,#49,#90,#9
9,0.01,$,$,#50,#51);
#93=WIRE_EDM_MACHINING_OPERATION($,$,'SLUG_REMOVAL',$,11,10.,#49,#90,#9
9,1.,$,$,#50,#51);
#94=WIRE_EDM_MACHINING_OPERATION($,$,'FINISHING',$,10.,#49,#90,#98,#114,0.
1,$,$,#50,#49);
#95=WIRE_EDM_MACHINING_OPERATION($,$,'SURFACE_FINISHING',$,10.,#49,
#90,#101,#114,0.01,$,#10,#50,#49);
Appendix III

#96=LINEAR_STRATEGY($,$);
#97=LINEAR_STRATEGY($,$);

#98=WIRE_EDM_TECHNOLOGY(0., TCP., $,$,#103,#108,#109,#110));
#99=WIRE_EDM_TECHNOLOGY(0., TCP., $,$,0);
#100=WIRE_EDM_TECHNOLOGY(0., $,$,($,#102,#105,#107,#106));
#101=WIRE_EDM_TECHNOLOGY(0., TCP., $,$,($,#104,#111,#112,#113));

#102=DESCRIPTIVE_PARAMETER('ID','Q2');
#103=DESCRIPTIVE_PARAMETER('ID','Q3');
#104=DESCRIPTIVE_PARAMETER('ID','Q8');

#105=NUMERIC_PARAMETER('RA',1.8,'MICM');
#106=NUMERIC_PARAMETER('TKM',10.,'MICM');
#107=NUMERIC_PARAMETER('TE',10.,'MICM');
#108=NUMERIC_PARAMETER('RA',0.8,'MICM');
#109=NUMERIC_PARAMETER('TKM',6.,'MICM');
#110=NUMERIC_PARAMETER('TE',6.,'MICM');
#111=NUMERIC_PARAMETER('RA',0.4,'MICM');
#112=NUMERIC_PARAMETER('TKM',3.,'MICM');
#113=NUMERIC_PARAMETER('TE',3.,'MICM');

#114=WIRE_EDM_MACHINE_FUNCTIONS(T., $, T., F., O);

#115=CHANNEL('CHANEL_1');
#116=PLANE($,#87);
#117=SETUP('SETUP',$,#116,0);

ENDSEC;
END-ISO-10303-21;
CASE STUDY BASED ON THE EXAMPLE PART 2
PROVIDED IN ISO/DIS 14649-13

ISO-10303-21;
HEADER;

FILE_DESCRIPTION(
/* DESCRIPTION */ (
'THIS FILE CONTAINS THE STEP-NC FILE OF A WIRE-EDM MANUFACTURING'),
/* IMPLEMENTATION_LEVEL */ '/2;1');

FILE_NAME(
/* NAME */ 'SAMPLE WITH RULED SURFACESR',
/* TIME_STAMP */ '2003-02-28T13:09:21+02:00',
/* AUTHOR */ 'WILLY MAEDER',
/* ORGANIZATION */ 'CADCAMATION SA, ONEX-GENEVA, SWITZERLAND',
/* PREPROCESSOR_VERSION */ 'ST-DEVELOPER V8',
/* ORIGINATING_SYSTEM */ '',
/* AUTHORISATION */ ');

FILE_SCHEMA ("MACHINING_SCHEMA',"WIRE_EDM_SCHEMA");
ENDSEC;

DATA;
#2=CARTESIAN_POINT(",-50.0,30.0,20.0));
#3=CARTESIAN_POINT(",(0.0,30.0,20.0));
#4=CARTESIAN_POINT(",-46.0,26.0,0.0));
#5=CARTESIAN_POINT(",-3.762857145299775,26.0,0.0,0.0));

#6=B_SPLINE_SURFACE_WITH_KNOTS","1,1,(#2,#4),(#3,#5),UNSPECIFIED,F,F, U,(2,2),(2,2),(-50.0,0.0,0.0,0.0,1.0),UNSPECIFIED;);

#7=CARTESIAN_POINT(",(8.786796564403542,8.786796564403606,20.0));
#8=CARTESIAN_POINT((6.935595340170893,10.637997788636259,20.0));
#9=CARTESIAN_POINT((3.720779449950078,14.827639903211258,20.0));
#10=CARTESIAN_POINT((0.689306233719310,22.146263655806401,20.0));
#11=CARTESIAN_POINT((-2.645847E-015,27.382006122008541,20.0));
#12=CARTESIAN_POINT((0.0,30.0,20.0));
#13=CARTESIAN_POINT((8.955855216991068,3.295244424414630,0.0));
#14=CARTESIAN_POINT((6.625202790118892,5.131868128801239,0.0));
#15=CARTESIAN_POINT((2.447738076373918,9.418653244410192,0.0));
#16=CARTESIAN_POINT((-1.940637859416365,17.251877607654784,0.0));
#17=CARTESIAN_POINT((-3.414762067389234,23.053144355443618,0.0));
#18=CARTESIAN_POINT((-3.763871791715616,25.999879797732245,0.0));

#19=B_SPLINE_SURFACE_WITH_KNOTS(3,1,((#7,#13),(#8,#14),(#9,#15),(#10,#16),
(#11,#17),(#12,#18)),UNSPECIFIED.,.F.,.F.,.U.,(4,1,1,4),(2,2),
(-3.92690816987240,-3.665191429188091,-3.403392041388941,
-3.141592653589792),(0.0,1.0),UNSPECIFIED.);

#20=CARTESIAN_POINT((8.786796564403602,8.786796564403602,20.0));
#21=CARTESIAN_POINT((30.0,30.0,20.0));
#22=CARTESIAN_POINT((8.955855216991086,3.295244424414616,0.0));
#23=CARTESIAN_POINT((31.656854249492397,26.0,0.0));

#24=B_SPLINE_SURFACE_WITH_KNOTS(1,1,((#20,#22),(#21,#23)),UNSPECIFIED.,
.F.,.F.,.U.,(2,2),(2,2),(-30.0,0.0),(0.0,1.0),UNSPECIFIED.);

#25=CARTESIAN_POINT((30.0,30.0,20.0));
#26=CARTESIAN_POINT((70.0,30.0,20.0));
#27=CARTESIAN_POINT((31.656854249492397,26.0,0.0));
#28=CARTESIAN_POINT((66.0,26.0,0.0));

#29=B_SPLINE_SURFACE_WITH_KNOTS(1,1,((#25,#27),(#26,#28)),UNSPECIFIED.,
.F.,.F.,.U.,(2,2),(2,2),(-40.0,0.0),(0.0,1.0),UNSPECIFIED.);

#30=CARTESIAN_POINT((70.0,30.0,20.0));
#31=CARTESIAN_POINT((70.0,-50.0,20.0));
#32=CARTESIAN_POINT((66.0,26.0,0.0));
#33=CARTESIAN_POINT((66.0,-46.0,0.0));

#34=B_SPLINE_SURFACE_WITH_KNOTS(1,1,((#30,#32),(#31,#33)),UNSPECIFIED.,
.F.,.F.,.U.,(2,2),(2,2),(-80.0,0.0),(0.0,1.0),UNSPECIFIED.);

#35=CARTESIAN_POINT((70.0,-50.0,20.0));
#36=CARTESIAN_POINT((-20.0,-50.0,20.0));
#37=CARTESIAN_POINT((66.0,-46.0,0.0));
#38=CARTESIAN_POINT((-20.0,-46.0,0.0));

#39=B_SPLINE_SURFACE_WITH_KNOTS(1,1,((#35,#37),(#36,#38)),UNSPECIFIED.,
.F.,.F.,.U.,(2,2),(2,2),(-90.0,0.0),(0.0,1.0),UNSPECIFIED.);

#40=CARTESIAN_POINT((-50.0,-20.0,20.0));
Appendix III

41=CARTESIAN_POINT("(-50.0,30.0,20.0));
42=CARTESIAN_POINT("(-46.0,-20.0,0.0));
43=CARTESIAN_POINT("(-46.0,26.0,0.0));

44=B_SPLINE_SURFACE_WITH_KNOTS("1,1,((#40,#42),(#41,#43)),.UNSPECIFIED.,
.F.,.F.,.U.,(2,2),(2,2),(-50.0,0.0),(0.0,1.0),.UNSPECIFIED.);

45=CARTESIAN_POINT("(-50.0,-20.0,20.0));
46=CARTESIAN_POINT("(-50.0,-22.243994752564106,20.0));
47=CARTESIAN_POINT("(-49.494332216275893,-25.836183427878151,0.0));
48=CARTESIAN_POINT("(-47.256861435762637,-31.375547320925282,0.0));
49=CARTESIAN_POINT("(-38.862332356046295,-40.498899405998628,0.0));
50=CARTESIAN_POINT("(-31.262166472776763,-49.494332162758792,20.0));
51=CARTESIAN_POINT("(-26.731874096003700,-49.494332162758792,20.0));
52=CARTESIAN_POINT("(-22.43994752564198,-50.0,20.0));
53=CARTESIAN_POINT("(-20.0,-50.0,20.0));
54=CARTESIAN_POINT("(-46.0,-20.0,0.0));
55=CARTESIAN_POINT("(-46.0,-21.940717585790633,0.0));
56=CARTESIAN_POINT("(-45.561751785744534,-25.836183427878151,0.0));
57=CARTESIAN_POINT("(-43.622623050258596,-31.375547320925282,0.0));
58=CARTESIAN_POINT("(-40.498899405998614,-36.347490590759556,0.0));
59=CARTESIAN_POINT("(-36.347490590759676,-40.498899405998628,0.0));
60=CARTESIAN_POINT("(-31.3755477320925357,-43.622623050258554,0.0));
61=CARTESIAN_POINT("(-28.36183427878254,-45.561751785744747,0.0));
62=CARTESIAN_POINT("(-21.940717585790722,-46.0,0.0));
63=CARTESIAN_POINT("(-20.0,-46.0,0.0));
64=CARTESIAN_POINT("(-20.0,-46.0,0.0));

65=B_SPLINE_SURFACE_WITH_KNOTS("3,1,((#45,#55),(#46,#56),(#47,#57),(#48,#58),(#49,#59),(#50,#60)),(#51,#61),(#52,#62),(#53,#63),(#54,#64)),.UNSPECIFIED.,
.F.,.F.,.U.,(2,2),(-5.590391604102619,3.184791079359032,4.03919054615447,4.263590029871861,
4.887989505128275,4.712388980384688),(0.0,1.0),.UNSPECIFIED.);

110=DESCRIPTIVE_PARAMETER('TKM','+/-10 MICROM');
111=DESCRIPTIVE_PARAMETER('TE', '10-15 MICROM');
112=WIRE_EDM_TECHNOLOGY(0,$,$,$, #113, #111, #110);
113=NUMERIC_PARAMETER('RA', 1.8, 'MICROM');
114=LINEAR_STRATEGY($,$);
115=WIRE_EDM_MACHINE_FUNCTIONS(T.,2.3,F.,F.);
#119=MATERIAL("COLD DIE STEEL");
#120=MATERIAL("COBRA CUT");

#121=WORKPLAN('WORKPLAN1',(#122),$);

#122=MACHINING_WORKINGSTEP('STEP1',#125,#163);

#125=REGION_SURFACE_LIST('REGION1',#18,#163,(#6,#19,#24,#29,#34,#39,#44,#65));

#163=WIRE_EDM_MACHINING_OPERATION($,'OPER1',#94,#116,#112,#115,2,$,#114,#95,#96);

ENDSEC;
END-ISO-10303-21;
Appendix IV

STEP-NC (ISO 14649-10) ENTITY
SETUP

STEP-NC setup entity
ENTITY setup;
its_id: identifier;
its_origin: OPTIONAL axis2_placement_3d;
its_secplane: elementary_surface;
its_workpiece_setup: LIST [0:?] OF workpiece_setup;
(*
Informal proposition:
If its_origin is not set, the default for the origin of the setup is identical with the machine origin.
*)
END_ENTITY;

Description
its_id: The identification of the setup.
its_origin: Position and orientation of the setup's cartesian coordinate system relative to the machine coordinate system.
its_secplane: The security plane for the whole setup. On or above this plane, i.e. for z values greater than those of the elementary_surface, a safe movement of the tool without danger of collision is possible. The dimensions given are relative coordinates as measured from the origin of the setup.
its_workpiece_setup: Each workpiece which is included within the setup and which will be machined within the respective workplan
Appendix V

NC PART PROGRAM GENERATED FROM
FANUC PC FAPT CUT I

%
N010 O0001
N020 G00 G40 G50
N030 G10 P1 X1 Y1 Z4 U3 V190 W25 I10 J10 K1 A30 C10 E7 Q0 L48 (D2.A2/30/.10/3H)
N040 G10 P1 X1 I0
N050 G10 P2 X1 Y3 Z3 U2 V200 W40 I0 J0 K2 A40 C13 E2 Q0 L290 (D2.A2/30/.10/32)
N060 G10 P2 X1 I0
N070 G10 P3 X2 Y3 U40 V100 W33 K3 A40 C13 E2 Q0 L920 (D2.A2/30/.10/33)
N080 G11 P3 X1 I0
N090 G90
N100 G10 P1 R0.1060
N110 G10 P2 R0.0710
N120 G10 P3 R0.0560
N130 G10 P0 R0.1060
N140 (FIG#1 / CONTOUR – 1)
N150 M37 B30
N160 M89
N170 S1 D1 G04 X2
N180 G92 X10 Y10
N190 G90 G01 G41 X10 Y0
N200 X19
N210 G03 X20 Y1 J1
N220 G01 Y19
N230 G03 X19 Y20 I-1
N240 G01 X1
N250 G03 X0 Y19 J-1
N260 G01 Y1
N270 G03 X1 Y0 I1
N280 G01 X9
N290 M01
N300 X10
N310 M00
N320 G40 Y10
N330 M00
N340 (FIG#1 / CONTOUR – 2)
N350 G90 G00 X10 Y10
N360 M38 B30 H0
N370 M88
N380 S2 D2 G04 X2
N390 G92 X10 Y10
N400 G90 G01 G41 X10 Y0

145
N410 X19
N420 G03 X20 Y1 J1
N430 G01 Y19
N440 G03 X19 Y20 I-1
N450 G01 X1
N460 G03 X0 Y19 J-1
N470 G01 Y1
N480 G03 X1 Y0 I1
N490 G01 X10
N500 G40 Y10
N510 (FIG#1/ CONTOUR – 3)
N520 G90 G00 X10 Y10
N530 M38 B30 H0
N540 M88
N550 S3 D3 G04 X2
N560 G92 X10 Y10
N570 G90 G01 G41 X10 Y0
N580 X19
N590 G03 X20 Y1 J1
N600 G01 Y19
N610 G03 X19 Y20 I-1
N620 G01 X1
N630 G03 X0 Y19 J-1
N640 G01 Y1
N650 G03 X1 Y0 I1
N660 G01 X10
N670 G40 Y10
N680 /M50
N690 G90 G00 X10 Y10
N700 M30
%

Total Time of Rapid: 00:00'00"
Total Time of Cutting: 05:49'03"
Total Length: 294.85
Max. Wire Inclination Angle: 0.0
Wire Cut Start Points: X10 Y10
NC PART PROGRAM GENERATED FROM PEPS SOLID CUT

% L110 /FIG
N10 (METRIC)
N20 (H99 RESERVED - PEPS)
N30 G71
N40 Z1=0.00
N50 Z2=15.00
N60 Z5=30.00
N70 G90
N80 G92 X0.0 Y0.0
N90 G00 X10.0 Y10.0 U0.0 V0.0
N100 (ROUGH CUT #1 FIG_000)
N110 M20
N120 M78
N130 M80
N140 M82
N150 M84
N160 M89
N170 M101
N180 E1 F1.0 H1
N190 G01 G41 X10.0 Y0.0 M90
N200 G01 X19.0 Y0.0
N210 G03 X20.0 Y1.0 I0.0 J1.0
N220 G01 Y19.0
N230 G03 X19.0 Y20.0 I-1.0 J0.0
N240 G01 X1.0
N250 G03 X0.0 Y19.0 I0.0 J-1.0
N260 G01 Y1.0
N270 G03 X1.0 Y0.0 I1.0 J0.0
N280 G01 X9.0
N290 M01
N300 M78
N310 M80
N320 M82
N330 M84
N340 G01 X10.0 Y0.0
N350 G03 X11.0 Y1.0 I0.0 J1.0
N360 G01 Y10.0
N370 G01 G40 X10.0 U0.0 V0.0
N380 M91
N390 G04 X13.0
N400 (TRIM CUT #2 FIG_000)
N410 M88
N420 E2 F2.0 H2
N430 G01 G41 X10.0 Y0.0 M90
H1 (-0.0) E1 F1 Comment for cut: ROUGH CUT #1 FIG_000
H2 (-0.0) E2 F2 Comment for cut: TRIM CUT #2 FIG_000
H3 (-0.0) E3 F3 Comment for cut: TRIM CUT #3 FIG_000

Length of machining incl. final cuts 299.57 mm
Estimated Cycle Time 149.79 min
Appendix V

G Code List

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>G04</td>
<td>Dwell</td>
<td>G04 P, G04 X</td>
</tr>
<tr>
<td>G93</td>
<td>Local Position Setting</td>
<td>G93 X Y</td>
</tr>
<tr>
<td>G28</td>
<td>Return To Machine Zero Point</td>
<td>G28 X Y U V</td>
</tr>
<tr>
<td>G29</td>
<td>Return From Reference Point</td>
<td>G29 X Y U V</td>
</tr>
<tr>
<td>G30</td>
<td>Return To 2, 3, 4th Reference Point</td>
<td>G30 P X Y U V</td>
</tr>
<tr>
<td>G32</td>
<td>Reference Point Setting - Type A</td>
<td>G32 P</td>
</tr>
<tr>
<td>G33</td>
<td>Reference Point Setting - Type B</td>
<td>G33 P X Y U V</td>
</tr>
<tr>
<td>G10</td>
<td>Setting Offset Or Condition</td>
<td>G10 P R, G10 P X Y Z U V W</td>
</tr>
<tr>
<td>G00</td>
<td>Rapid Traverse</td>
<td>G00 X Y U V</td>
</tr>
<tr>
<td>G01</td>
<td>Linear Interpolation</td>
<td>G01 X Y U V</td>
</tr>
<tr>
<td>G02</td>
<td>Circular Interpolation (CW)</td>
<td>G02 X Y I J U V K L</td>
</tr>
<tr>
<td>G03</td>
<td>Circular Interpolation (CCW)</td>
<td>G03 X Y I J U V K L</td>
</tr>
<tr>
<td>G17</td>
<td>Specifying The X-Y Plane</td>
<td>G17</td>
</tr>
<tr>
<td>G90</td>
<td>Absolute Programming</td>
<td>G90</td>
</tr>
<tr>
<td>G91</td>
<td>Incremental Programming</td>
<td>G91</td>
</tr>
<tr>
<td>G22</td>
<td>Stored Stroke Limit On</td>
<td>G22 X Y I J</td>
</tr>
<tr>
<td>G23</td>
<td>Stored Stroke Limit Off</td>
<td>G23</td>
</tr>
<tr>
<td>G94</td>
<td>Constant Feed</td>
<td>G94 X Y F</td>
</tr>
<tr>
<td>G95</td>
<td>Servo Feed</td>
<td>G95 X Y</td>
</tr>
</tbody>
</table>

M Code List

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M00</td>
<td>Unconditional Program Stop</td>
<td>M27</td>
<td>Corner Control On (Roughing)</td>
</tr>
<tr>
<td>M01</td>
<td>Optional Program Stop</td>
<td>M28</td>
<td>Corner Control On (Skimming)</td>
</tr>
<tr>
<td>M02</td>
<td>Program End</td>
<td>M29</td>
<td>Corner Control Function Off</td>
</tr>
<tr>
<td>M30</td>
<td>Program End And Rewind</td>
<td>M37</td>
<td>Corner Control On Except G40 (Roughing)</td>
</tr>
<tr>
<td>M04</td>
<td>Dell (M04 P_)</td>
<td>M38</td>
<td>Corner Control On Except G40 (Skimming)</td>
</tr>
<tr>
<td>M13</td>
<td>Setting Feedrate Override (M13 P_)</td>
<td>M56</td>
<td>AWR Off Time Control Function Off</td>
</tr>
<tr>
<td>M15</td>
<td>Selection of Tapering Mode (M15 P_)</td>
<td>M57</td>
<td>AWR Off Time Control Function On</td>
</tr>
<tr>
<td>M31</td>
<td>Reset Machining Timer</td>
<td>M88</td>
<td>Approach Control Function Off</td>
</tr>
<tr>
<td>M32</td>
<td>Hold Water At Program End</td>
<td>M89</td>
<td>Approach Control Function On</td>
</tr>
<tr>
<td>M70</td>
<td>Retrace Wire Path To Start Point</td>
<td>M92</td>
<td>Upper Flush Off</td>
</tr>
<tr>
<td>M72</td>
<td>Start Point Of Cut Monitor</td>
<td>M93</td>
<td>Upper Flush On</td>
</tr>
<tr>
<td>M96</td>
<td>Reverse Copy End</td>
<td>M94</td>
<td>Lower Flush Off</td>
</tr>
<tr>
<td>M97</td>
<td>Reverse Copy Start</td>
<td>M95</td>
<td>Lower Flush On</td>
</tr>
<tr>
<td>M98</td>
<td>Subprogram Call</td>
<td>M161</td>
<td>WTA Control Off</td>
</tr>
<tr>
<td>M99</td>
<td>Subprogram End</td>
<td>M162</td>
<td>WTA Control On</td>
</tr>
<tr>
<td>M135</td>
<td>Discharge Position M70 Off</td>
<td>M165</td>
<td>Skim Off</td>
</tr>
<tr>
<td>M136</td>
<td>Discharge Position M70 On</td>
<td>M166</td>
<td>Skim On</td>
</tr>
</tbody>
</table>